Science Enabled by Specimen Data
Gallagher, K. M., and P. G. Albano. 2023. Range contractions, fragmentation, species extirpations, and extinctions of commercially valuable molluscs in the Mediterranean Sea—a climate warming hotspot R. Selden [ed.],. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsad065
Abstract The Mediterranean Sea is a global hotspot of climate warming and biodiversity loss where molluscs have provided valuable ecosystem services, such as provisioning and cultural value, since pre-historic times. A high rate of warming and range shift limitations due to the semi-enclosed nature of the basin raise concerns about molluscan population persistence in future climate scenarios. We modelled the future distribution of 13 Mediterranean species of molluscs subject to industrial fisheries exploitation on both the Mediterranean and Atlantic European coasts. We tested the hypothesis that range contractions, fragmentation, and species extirpations will become increasingly severe in the Mediterranean by modelling mid-century and end-century species distributions for four IPCC climate change scenarios. Already under mild emissions scenarios, substantial range contractions and fragmentation are projected in the Mediterranean, suggesting global extinctions by end-century for most endemic species. Colder deep waters do not act as refugia, contrary to expectations. Species also occurring along the Atlantic European coasts may benefit from warming through range expansions to higher latitudes or deeper waters. Most of the modeled species are already over-exploited, but their eradication from the Mediterranean will imply substantial financial losses and a profound cultural change in coastal communities.
Bento, M., H. Niza, A. Cartaxana, S. Bandeira, J. Paula, and A. M. Correia. 2023. Mind the Gaps: Taxonomic, Geographic and Temporal Data of Marine Invertebrate Databases from Mozambique and São Tomé and Príncipe. Diversity 15: 70. https://doi.org/10.3390/d15010070
One of the best ways to share and disseminate biodiversity information is through the digitization of data and making it available via online databases. The rapid growth of publicly available biodiversity data is not without problems which may decrease the utility of online databases. In this study we analyze taxonomic, geographic and temporal data gaps, and bias related to existing data on selected marine invertebrate occurrences along the coastline of two African countries, Mozambique and São Tomé and Príncipe. The final marine invertebrate dataset comprises of 19.910 occurrences, but 32% of the original dataset occurrences were excluded due to data gaps. Most marine invertebrates in Mozambique were collected in seagrasses, whereas in São Tomé and Príncipe they were mostly collected offshore. The dataset has a temporal coverage from 1816 to 2019, with most occurrences collected in the last two decades. This study provides baseline information relevant to a better understanding of marine invertebrate biodiversity data gaps and bias in these habitats along the coasts of these countries. The information can be further applied to complete marine invertebrate data gaps contributing to design informed sampling strategies and advancing refined datasets that can be used in management and conservation plans in both countries.
Yousefi, M., A. Mahmoudi, A. Kafash, A. Khani, and B. Kryštufek. 2022. Biogeography of rodents in Iran: species richness, elevational distribution and their environmental correlates. Mammalia 86: 309–320. https://doi.org/10.1515/mammalia-2021-0104
Abstract Rodent biogeographic studies are disproportionately scarce in Iran, however, they are an ideal system to understand drivers of biodiversity distributions in the country. The aims of the present research are to determine (i) the pattern of rodent richness across the country, (ii) quantify th…
Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235
The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…
Boulad, N., S. Al Shogoor, W. Sahwan, N. Al-Ouran, and B. Schütt. 2021. Systematic Conservation Planning as a Tool for the Assessment of Protected Areas Network in Jordan. Land 11: 56. https://doi.org/10.3390/land11010056
The present study aims to use systematic conservation planning to analyse and review the national protected areas (PAs) network in Jordan. The analysis included the application of three modules: the environmental risk surface (ERS), the relative biodiversity index (RBI), and the application of Marxa…
Niza, H., M. Bento, L. Lopes, A. Cartaxana, and A. Correia. 2021. A picture is worth a thousand words: using digital tools to visualise marine invertebrate diversity data along the coasts of Mozambique and São Tomé & Príncipe. Biodiversity Data Journal 9. https://doi.org/10.3897/bdj.9.e68817
The amount of biological data available in online repositories is increasing at an exponential rate. However, data on marine invertebrate biodiversity resources from Mozambique and São Tomé and Príncipe are still sparse and scattered. Online repositories are useful instruments for biodiversity resea…
Qu, J., Y. Xu, Y. Cui, S. Wu, L. Wang, X. Liu, Z. Xing, et al. 2021. MODB: a comprehensive mitochondrial genome database for Mollusca. Database 2021. https://doi.org/10.1093/database/baab056
Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…
Boag, T. H., W. Gearty, and R. G. Stockey. 2021. Metabolic tradeoffs control biodiversity gradients through geological time. Current Biology 31: 2906-2913.e3. https://doi.org/10.1016/j.cub.2021.04.021
The latitudinal gradient of increasing marine biodiversity from the poles to the tropics is one of the most conspicuous biological patterns in modern oceans.1, 2, 3 Low-latitude regions of the global ocean are often hotspots of animal biodiversity, yet they are set to be most critically affected b…
Ortiz, A. M. D., and J. N. V. Torres. 2020. Assessing the Impacts of Agriculture and Its Trade on Philippine Biodiversity. Land 9: 403. https://doi.org/10.3390/land9110403
Many Philippine species are at risk of extinction because of habitat loss and degradation driven by agricultural land use and land-use change. The Philippines is one of the world’s primary banana and pineapple producers. The input-intensive style of plantation agriculture for these typically exporte…
Carrasco, J., V. Price, V. Tulloch, and M. Mills. 2020. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation 29: 1841–1854. https://doi.org/10.1007/s10531-020-01947-1
Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…