Science Enabled by Specimen Data

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Alban, D. M., Biersma, E. M., Kadereit, J. W., & Dillenberger, M. S. (2021). Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Systematics and Evolution, 308(1). doi:10.1007/s00606-021-01793-w https://doi.org/10.1007/s00606-021-01793-w

Colobanthus (23 species) and Sagina (30–33 species) together are sister to Facchinia. Whereas Facchinia is distributed in western Eurasia, Colobanthus is almost exclusively distributed in the Southern Hemisphere, and Sagina is distributed in both hemispheres with the highest species diversity in wes…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Ma, C.-S., Zhang, W., Peng, Y., Zhao, F., Chang, X.-Q., Xing, K., … Rudolf, V. H. W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12(1). doi:10.1038/s41467-021-25505-7 https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Brendel, M. R., Schurr, F. M., & Sheppard, C. S. (2020). Inter‐ and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time. Global Ecology and Biogeography. doi:10.1111/geb.13228 https://doi.org/10.1111/geb.13228

Aim: When alien species are introduced to new ranges, climate or trait mismatches may initially constrain their population growth. However, inter‐ and intraspecific selection in the new environment should cause population growth rates to increase with residence time. Using a species‐for‐time approac…

Li, K., Wang, J., Qiao, L., Zheng, R., Ma, Y., Chen, Y., … Liu, H. (2020). Diversity of Reproductive Phenology Among Subtropical Grasses Is Constrained by Evolution and Climatic Niche. Frontiers in Ecology and Evolution, 8. doi:10.3389/fevo.2020.00181 https://doi.org/10.3389/fevo.2020.00181

Reproductive phenology is sensitive to climatic changes and is associated with species functional types, distribution ranges, and their corresponding climatic niches. Phylogenetic niche conservatism in reproductive phenology also constrains its diversity and the distribution of species. Therefore, w…

Van Treuren, R., Hoekstra, R., Wehrens, R., & van Hintum, T. (2020). Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation, 23, e01054. doi:10.1016/j.gecco.2020.e01054 https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Kovalchuk, I., Pellino, M., Rigault, P., van Velzen, R., Ebersbach, J., R. Ashnest, J., … Sharbel, T. F. (2020). The Genomics of Cannabis and Its Close Relatives. Annual Review of Plant Biology, 71(1). doi:10.1146/annurev-arplant-081519-040203 https://doi.org/10.1146/annurev-arplant-081519-040203

Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social int…

Smith, A. L., Hodkinson, T. R., Villellas, J., Catford, J. A., Csergő, A. M., Blomberg, S. P., … Buckley, Y. M. (2020). Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences, 117(8), 4218–4227. doi:10.1073/pnas.1915848117 https://doi.org/10.1073/pnas.1915848117

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic div…