Science Enabled by Specimen Data

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).

Hirabayashi, K., S. J. Murch, and L. A. E. Erland. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of The Total Environment 845: 157341. https://doi.org/10.1016/j.scitotenv.2022.157341

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2–4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041–2060 and 2061–2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.

Liang, S., X. Zhang, and R. Wei. 2022. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Molecular Ecology 31: 2679–2697. https://doi.org/10.1111/mec.16420

The formation of spatial genetic structure with the presence of extensive gene flow, an evolutionary force which is generally expected to eliminate population-specific variation and maintain genetic homogeneity, remains poorly understood. Homosporous ferns, which spread by spores through wind and possess long-distance dispersal capacity, provide an ideal system to investigate such a process. Here, using a homoploid fern lineage, the Athyrium sinense complex, we used reduced-representation genomic data to examine spatial genetic structure and explored potential driving forces including geographical distance, environment, climatic history and external dispersal constraints. Our findings showed a clear north-south divergence at the genetic, morphological and ecological levels between both sides of 35°N in East Asia. Fluctuant and heterogeneous climatic condition was demonstrated to play a crucial role during the formation of the divergence. Our results suggested that this lineage was able to migrate southward and colonize new habitat as a result of the Quaternary climatic fluctuation. Furthermore, the present genetic structure is attributed to adaptation to heterogeneous environments, especially temperature difference. In addition to ecological adaptation, we found clues showing that canopy density, wind direction as well as habitat continuity were all likely to constrain the effect of gene flow. These results demonstrated a diversification process without ploidy changes in ferns providing new insights for our present knowledge on ferns’ spatio-temporal evolutionary pattern. In particular, our study highlights the influence of environmental heterogeneity in driving genetic divergence against strong dispersal capacity.

KHRAPOV, D., N. KOVAL, and N. YUNAKOV. 2022. Prediction of the distribution limits of Rhinomias forticornis (Boheman, 1842) (Coleoptera: Curculionidae: Entiminae) based on Remote Sensing. Journal of Insect Biodiversity 31. https://doi.org/10.12976/jib/2022.31.1.3

Morphometry and diagnosis of Rhinomias forticornis (Boheman, 1842) are given. Distribution of Rhinomias forticornis is analyzed using known occurrences, original ecological data, correlative species distribution modeling with aspect on Last Glacial Maximum environment are given. To achieve a more re…

Filartiga, A. L., A. Klimeš, J. Altman, M. P. Nobis, A. Crivellaro, F. Schweingruber, and J. Doležal. 2022. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany 129: 567–582. https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Bazzicalupo, A. L., J. Whitton, and M. L. Berbee. 2019. Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

Lake, T. A., R. D. Briscoe Runquist, and D. A. Moeller. 2020. Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections C. Bellard [ed.],. Diversity and Distributions 26: 1767–1779. https://doi.org/10.1111/ddi.13161

Aim: Species distribution models (SDMs) are widely used to forecast potential range expansion of invasive species. However, invasive species occurrence datasets often have spatial biases that may violate key SDM assumptions. In this study, we examined alternative methods of spatial bias correction a…

Grünig, M., D. Mazzi, P. Calanca, D. N. Karger, and L. Pellissier. 2020. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology 3. https://doi.org/10.1038/s42003-020-0962-9

Global changes pose both risks and opportunities to agriculture and forestry, and biological forecasts can inform future management strategies. Here, we investigate potential land-use opportunities arising from climate change for these sectors in Europe, and risks associated with the introduction an…