Science Enabled by Specimen Data
[NO TITLE AVAILABLE] https://doi.org/10.50826/bnmnsbot.48.2_31
To clarify biogeographic patterns of two mushroom species (Phallus merulinus and Geastrum courtecuissei) previously reported from Myanmar, sequence data of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA were retrieved from GenBank. The BLAST search and phylogenetic analyses of Phallus indicated that P. merulinus and P. atrovolvatus from wide areas, including Australia, Myanmar, Thailand, Brazil, and French Guiana, cannot be distinguished molecularly. The species was, therefore, considered widespread across tropical to subtropical regions. In contrast, G. courtecuissei from Myanmar was tightly clustered exclusively with G. courtecuissei from Central and South America, supporting the idea of its disjunct distribution between Southeast Asia (Myanmar) and Central-South Americas.
Bywater‐Reyes, S., R. M. Diehl, A. C. Wilcox, J. C. Stella, and L. Kui. 2022. A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers. Earth Surface Processes and Landforms 47: 2410–2436. https://doi.org/10.1002/esp.5385
The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed material properties, and flow and sediment regimes. In many rivers, concurrent changes in 1) the composition of riparian vegetation communities as a result of exotic species invasion and 2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review how Tamarix, which has invaded many U.S. Southwest waterways, and Populus species, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modeling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found differences in the crown morphology, stem density, and flexibility of Tamarix compared to Populus influenced near‐bed flow velocities in a manner that favored aggradation associated with Tamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different for Tamarix‐ versus Populus‐dominated reaches, with faster and greater geomorphic adjustments for Tamarix. Collectively, our studies show how plant‐trait differences between Tamarix and Populus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure in additional to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Hughes, A. C., M. C. Orr, K. Ma, M. J. Costello, J. Waller, P. Provoost, Q. Yang, et al. 2021. Sampling biases shape our view of the natural world. Ecography 44: 1259–1269. https://doi.org/10.1111/ecog.05926
Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…
Fernández‐López, J., M. T. Telleria, M. Dueñas, T. May, and M. P. Martín. 2021. DNA barcode analyses improve accuracy in fungal species distribution models. Ecology and Evolution 11: 8993–9009. https://doi.org/10.1002/ece3.7737
Species distribution models based on environmental predictors are useful to explain a species geographic range. For many groups of organisms, including fungi, the increase in occurrence data sets has generalized their use. However, fungal species are not always easy to distinguish, and taxonomy of m…
Wieringa, J. G., B. C. Carstens, and H. L. Gibbs. 2021. Predicting migration routes for three species of migratory bats using species distribution models. PeerJ 9: e11177. https://doi.org/10.7717/peerj.11177
Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is impo…
Oegelund Nielsen, R., R. da Silva, J. Juergens, J. Staerk, L. Lindholm Sørensen, J. Jackson, S. Q. Smeele, and D. A. Conde. 2020. Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief 33: 106337. https://doi.org/10.1016/j.dib.2020.106337
#N/A