Science Enabled by Specimen Data

Wang, C.-J., & Wan, J.-Z. (2021). Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2021.07.002 https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Mairal, M., Chown, S. L., Shaw, J., Chala, D., Chau, J. H., Hui, C., … Le Roux, J. J. (2021). Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub‐Antarctic. Molecular Ecology. doi:10.1111/mec.16045 https://doi.org/10.1111/mec.16045

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differen…

Rock, B. M., & Daru, B. H. (2021). Impediments to Understanding Seagrasses’ Response to Global Change. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.608867 https://doi.org/10.3389/fmars.2021.608867

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate chang…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Lake, T. A., Briscoe Runquist, R. D., & Moeller, D. A. (2020). Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. Diversity and Distributions, 26(12), 1767–1779. doi:10.1111/ddi.13161 https://doi.org/10.1111/ddi.13161

Aim: Species distribution models (SDMs) are widely used to forecast potential range expansion of invasive species. However, invasive species occurrence datasets often have spatial biases that may violate key SDM assumptions. In this study, we examined alternative methods of spatial bias correction a…

Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S., & Fleischmann, A. S. (2020). Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation, e01272. doi:10.1016/j.gecco.2020.e01272 https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Léveillé-Bourret, É., Chen, B.-H., Garon-Labrecque, M.-È., Ford, B. A., & Starr, J. R. (2019). RAD sequencing resolves the phylogeny, taxonomy and biogeography of Trichophoreae despite a rapid recent radiation (Cyperaceae). Molecular Phylogenetics and Evolution, 106727. doi:10.1016/j.ympev.2019.106727 https://doi.org/10.1016/j.ympev.2019.106727

Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ∼17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) are controversial …