Science Enabled by Specimen Data

Angulo, J. C., J. M. Burke, and F. A. Michelangeli. 2023. Characterizing the frequency, morphological gradient, and distribution of dioecy in Miconia (Melastomataceae). International Journal of Plant Sciences. https://doi.org/10.1086/729063

Dioecy has evolved many times independently within the angiosperms. The distribution, frequency of occurrence, and floral morphology of dioecious angiosperms constitute the foundations for comparative studies of dioecy, yet for many groups they are still poorly characterized. We assessed species of Miconia for the presence of dioecious reproductive system, characterized the floral morphology for staminate and pistillate flowers, and used herbarium records to analyze patterns of distribution and elevational range. We find that dioecious Miconia represent an uncommon case of mismatched stage of organ abortion between staminate and pistillate flowers, with functionally pistillate flower morphology largely consistent across species, and morphological expression in functionally staminate flowers varying from near absent to slight reductions in gynoecia. We identify 58 dioecious species and 15 putatively dioecious species within Miconia that are distributed primarily in montane habitats between 1000 m – 3500 m in the Andes, parts of Central America, and the Caribbean. Our results double the last known count of dioecy in Miconia and highlight the gradient of vestigial morphology in staminate flowers. Lastly, we provide discussion on the significance of dioecy in relation to floral development, pollination, and ecology in Miconia.

Rocha, J., P. J. Nunes, A. Pinto, L. Fenina, A. L. Afonso, A. R. Seixas, R. Cruz, et al. 2024. Ecological adaptation of Australian Myrtaceae through the leaf waxes analysis: Corymbia citriodora, Eucalyptus gunnii, and Eucalyptus globulus. Flora 310: 152435. https://doi.org/10.1016/j.flora.2023.152435

Seeking to get insight into the close relationship between plant waxes and the climatic conditions of plants’ original biomes, the leaves of three Myrtaceae from the eastern Australian-Tasmanian region (Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson (lemon-scented gum), Eucalyptus gunnii Hook. (cider gum), and Eucalyptus globulus Labill. (blue gum)) were selected. The present study relied on the analysis of juvenile leaf samples of the three species collected at the Botanical Garden of the University of Trás-os-Montes e Alto Douro (Portugal) during the driest and warmest period of the year (July), to ensure the same environmental conditions as the Australian species from December to February, for cider gum and blue gum, and from June to September, for lemon-scented gum. Both surfaces of the leaves of the three Myrtaceae species exhibit superhydrophobic behavior. They are covered with wax tubules, but these are thicker and the surface is smoother in the case of cider gum. From the chemical standpoint, the leaf waxes of the three species revealed a prevalence of β-diketones and sterols over alcohols, alkanes, and esters. The relative ketone/sterol concentration ratio demonstrated an environmental dynamic variation with climate, i.e., with the ombrothermic regimes. The highest concentration of β-diketone and the lowest concentration of sterols was observed for species from dryer conditions (lemon-scented gum), whereas the reverse trend was found for species from wetter conditions (cider gum and blue gum).The present work strongly suggests that the chemical composition of leaf waxes, rather than wettability, seems to be directly correlated with environmental variability at the species’ natural site. The methodology proposed here opens exciting new prospects for the investigation of the environmental dynamics of terrestrial plants.

Cosme, M. 2023. Mycorrhizas drive the evolution of plant adaptation to drought. Communications Biology 6. https://doi.org/10.1038/s42003-023-04722-4

Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates. Phylogenetic comparative analysis using data of 1,638 species of angiosperms and gymnosperms suggests that the evolution of plant adaptation to critical environmental change in water availability across global climates is dependent on mycorrhizas.

Rahman, W., J. Magos Brehm, and N. Maxted. 2023. The impact of climate change on the future distribution of priority crop wild relatives in Indonesia and implications for conservation planning. Journal for Nature Conservation 73: 126368. https://doi.org/10.1016/j.jnc.2023.126368

The analysis of climate change impact is essential to include in conservation planning of crop wild relatives (CWR) to provide the guideline for adequate long-term protection under unpredictable future environmental conditions. These resources play an important role in sustaining the future of food security, but the evidence shows that they are threatened by climate change. The current analyses show that five taxa were predicted to have contraction of more than 30 % of their current ranges: Artocarpus sepicanus (based on RCP 4.5 in both no dispersal and unlimited dispersal scenario and RCP 8.5 in no dispersal scenario by 2050), Ficus oleifolia (RCP 4.5 5 in both no dispersal and unlimited dispersal scenario by 2080), Cocos nucifera and Dioscorea alata (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050), and Ficus chartacea (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050 and 2080). It shows that the climate change impact is species-specific. Representative Concentration Pathways (RCP) of greenhouse gas (GHG) emission and dispersal scenarios influence the prediction models, and the actual future distribution range of species falls in between those scenarios. Climate refugia, holdout populations, and non-analogue community assemblages were identified based on the Protected Areas (PAs) network. PAs capacity is considered an important element in implementing a conservation strategy for the priority CWR. In areas where PAs are isolated and have less possibility to build corridors to connect each other, such as in Java, unlimited dispersal scenarios are unlikely to be achieved and assisted dispersal is suggested. The holdout populations should be the priority target for the ex situ collection. Therefore, by considering the climate refugia, PAs capacity and holdout populations, the goal of keeping high genetic variations for the long-term conservation of CWR in Indonesia can be achieved.

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.

Ralimanana, H., A. L. Perrigo, R. J. Smith, J. S. Borrell, S. Faurby, M. T. Rajaonah, T. Randriamboavonjy, et al. 2022. Madagascar’s extraordinary biodiversity: Threats and opportunities. Science 378. https://doi.org/10.1126/science.adf1466

Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.

Lannuzel, G., L. Pouget, D. Bruy, V. Hequet, S. Meyer, J. Munzinger, and G. Gâteblé. 2022. Mining rare Earth elements: Identifying the plant species most threatened by ore extraction in an insular hotspot. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.952439

Conservation efforts in global biodiversity hotspots often face a common predicament: an urgent need for conservation action hampered by a significant lack of knowledge about that biodiversity. In recent decades, the computerisation of primary biodiversity data worldwide has provided the scientific community with raw material to increase our understanding of the shared natural heritage. These datasets, however, suffer from a lot of geographical and taxonomic inaccuracies. Automated tools developed to enhance their reliability have shown that detailed expert examination remains the best way to achieve robust and exhaustive datasets. In New Caledonia, one of the most important biodiversity hotspots worldwide, the plant diversity inventory is still underway, and most taxa awaiting formal description are narrow endemics, hence by definition hard to discern in the datasets. In the meantime, anthropogenic pressures, such as nickel-ore mining, are threatening the unique ultramafic ecosystems at an increasing rate. The conservation challenge is therefore a race against time, as the rarest species must be identified and protected before they vanish. In this study, based on all available datasets and resources, we applied a workflow capable of highlighting the lesser known taxa. The main challenges addressed were to aggregate all data available worldwide, and tackle the geographical and taxonomic biases, avoiding the data loss resulting from automated filtering. Every doubtful specimen went through a careful taxonomic analysis by a local and international taxonomist panel. Geolocation of the whole dataset was achieved through dataset cross-checking, local botanists’ field knowledge, and historical material examination. Field studies were also conducted to clarify the most unresolved taxa. With the help of this method and by analysing over 85,000 data, we were able to double the number of known narrow endemic taxa, elucidate 68 putative new species, and update our knowledge of the rarest species’ distributions so as to promote conservation measures.

Pang, S. E. H., Y. Zeng, J. D. T. Alban, and E. L. Webb. 2022. Occurrence–habitat mismatching and niche truncation when modelling distributions affected by anthropogenic range contractions B. Leroy [ed.],. Diversity and Distributions 28: 1327–1343. https://doi.org/10.1111/ddi.13544

Aims Human-induced pressures such as deforestation cause anthropogenic range contractions (ARCs). Such contractions present dynamic distributions that may engender data misrepresentations within species distribution models. The temporal bias of occurrence data—where occurrences represent distributions before (past bias) or after (recent bias) ARCs—underpins these data misrepresentations. Occurrence–habitat mismatching results when occurrences sampled before contractions are modelled with contemporary anthropogenic variables; niche truncation results when occurrences sampled after contractions are modelled without anthropogenic variables. Our understanding of their independent and interactive effects on model performance remains incomplete but is vital for developing good modelling protocols. Through a virtual ecologist approach, we demonstrate how these data misrepresentations manifest and investigate their effects on model performance. Location Virtual Southeast Asia. Methods Using 100 virtual species, we simulated ARCs with 100-year land-use data and generated temporally biased (past and recent) occurrence datasets. We modelled datasets with and without a contemporary land-use variable (conventional modelling protocols) and with a temporally dynamic land-use variable. We evaluated each model's ability to predict historical and contemporary distributions. Results Greater ARC resulted in greater occurrence–habitat mismatching for datasets with past bias and greater niche truncation for datasets with recent bias. Occurrence–habitat mismatching prevented models with the contemporary land-use variable from predicting anthropogenic-related absences, causing overpredictions of contemporary distributions. Although niche truncation caused underpredictions of historical distributions (environmentally suitable habitats), incorporating the contemporary land-use variable resolved these underpredictions, even when mismatching occurred. Models with the temporally dynamic land-use variable consistently outperformed models without. Main conclusions We showed how these data misrepresentations can degrade model performance, undermining their use for empirical research and conservation science. Given the ubiquity of ARCs, these data misrepresentations are likely inherent to most datasets. Therefore, we present a three-step strategy for handling data misrepresentations: maximize the temporal range of anthropogenic predictors, exclude mismatched occurrences and test for residual data misrepresentations.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Mazijk, R., M. D. Cramer, and G. A. Verboom. 2021. Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography 48: 1875–1888. https://doi.org/10.1111/jbi.14118

Aim: Given the importance of environmental heterogeneity as a driver of species richness through its effects on species diversification and coexistence, we asked whether the dramatic difference in species richness per unit area between two similar Mediterranean‐type biodiversity hotspots is explaine…