Science Enabled by Specimen Data
Giulian, J., B. N. Danforth, and J. G. Kueneman. 2024. A Large Aggregation of Melissodes bimaculatus (Hymenoptera: Apidae) Offers Perspectives on Gregarious Nesting and Pollination Services. Northeastern Naturalist 31. https://doi.org/10.1656/045.031.0314
From the largest nesting aggregation ever recorded for the genus Melissodes, we took diverse bionomic measurements of Melissodes bimaculatus (Two-spotted Longhorn Bee). Our results show a protandrous reproductive strategy occurring from July through August in New York. We observed parasitism by the kleptoparasitic bee Triepeolus simplex as well as nest-architecture modifications to ease this burden that support the selfish-herd hypothesis. In this population, we also found a proclivity for grass (Poaceae) pollen, a previously undocumented diet preference for Two-spotted Longhorn Bees. We further showed that this bee species has widespread climatically suitable habitat, with expected range expansion under future climate conditions. Altogether, our results offer novel insights into the ecology of theTwo-spotted Longhorn Bee and its gregarious nesting behavior.
Graham, K. K., P. Glaum, J. Hartert, J. Gibbs, E. Tucker, R. Isaacs, and F. S. Valdovinos. 2024. A century of wild bee sampling: historical data and neural network analysis reveal ecological traits associated with species loss. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2023.2837
We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.
Morim Gomes, M., B. Moreira Carvalho, and M. Souto Couri. 2024. Distribution of Sarcophagidae (Diptera, Oestroidea) in Brazilian biomes: richness, endemism, and sampling gaps. Studies on Neotropical Fauna and Environment: 1–11. https://doi.org/10.1080/01650521.2024.2380155
Sarcophagid experts have made several efforts to associate biodiversity data and comprehend where each species occurs, but comprehensive faunal inventories remain scarce. Our aim was to provide a list of distributional patterns and endemic species and allow assessment of the sampling effort conducted within Brazilian biomes. We produced a dataset of Brazilian sarcophagids and overlaid with a biome map, to investigate distributional patterns, endemism and to build species accumulation curves. Additionally, we calculated nonparametric asymptotic species richness estimators and extrapolation of species diversity (Hill numbers). Our dataset comprised 288 sarcophagid species, which 21 were identified as endemic. The biomes with the highest species richness were the Atlantic Rainforest and the Amazon Forest, and no biome exhibited a stabilized asymptotic curve. This is the first proposal of listing Sarcophagidae species by biomes and essential to understand the spatial distribution of this family in Brazil. We present maps and richness estimators that allow identifying gaps and guiding survey planning.
da Silva, C. R. B., and S. E. Diamond. 2024. Local climate change velocities and evolutionary history explain multidirectional range shifts in a North American butterfly assemblage. Journal of Animal Ecology 93: 1160–1171. https://doi.org/10.1111/1365-2656.14132
Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18‐years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast).Butterflies shifted their centroids at a mean rate of 4.87 km year−1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges.Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity.Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges.We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges.This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.
Moore, M. P., N. T. Leith, K. D. Fowler‐Finn, and K. A. Medley. 2024. Human‐modified habitats imperil ornamented dragonflies less than their non‐ornamented counterparts at local, regional, and continental scales. Ecology Letters 27. https://doi.org/10.1111/ele.14455
Biologists have long wondered how sexual ornamentation influences a species' risk of extinction. Because the evolution of condition‐dependent ornamentation can reduce intersexual conflict and accelerate the fixation of advantageous alleles, some theory predicts that ornamented taxa can be buffered against extinction in novel and/or stressful environments. Nevertheless, evidence from the wild remains limited. Here, we show that ornamented dragonflies are less vulnerable to extinction across multiple spatial scales. Population‐occupancy models across the Western United States reveal that ornamented species have become more common relative to non‐ornamented species over >100 years. Phylogenetic analyses indicate that ornamented species exhibit lower continent‐wide extinction risk than non‐ornamented species. Finally, spatial analyses of local dragonfly assemblages suggest that ornamented species possess advantages over non‐ornamented taxa at living in habitats that have been converted to farms and cities. Together, these findings suggest that ornamented taxa are buffered against contemporary extinction at local, regional, and continental scales.
López‐Aguilar, T. P., J. Montalva, B. Vilela, M. P. Arbetman, M. A. Aizen, C. L. Morales, and D. de P. Silva. 2024. Niche analyses and the potential distribution of four invasive bumblebees worldwide. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11200
The introduction of bees for agricultural production in distinct parts of the world and poor management have led to invasion processes that affect biodiversity, significantly impacting native species. Different Bombus species with invasive potential have been recorded spreading in different regions worldwide, generating ecological and economic losses. We applied environmental niche and potential distribution analyses to four species of the genus Bombus to evaluate the similarities and differences between their native and invaded ranges. We found that B. impatiens has an extended environmental niche, going from dry environmental conditions in the native range to warmer and wetter conditions in the invaded range. Bombus ruderatus also exhibited an extended environmental niche with drier and warmer conditions in the invaded range than in its native range. Bombus subterraneus expanded its environmental niche from cooler and wetter conditions in the native range to drier and warmer conditions in the invaded range. Finally, B. terrestris showed the most significant variation in the environmental niche, extending to areas with similar and different environmental conditions from its native range. The distribution models agreed with the known distributions for the four Bombus species, presenting geographic areas known to be occupied by each species in different regions worldwide. The niche analysis indicate shifts in the niches from the native to the invaded distribution area of the bee species. Still, niche similarities were observed in the areas of greatest suitability in the potential distribution for B. ruderatus, B. subterraneus, and B. terrestris, and to a lesser degree in the same areas with B. impatiens. These species require similar environmental conditions as in their native ranges to be established in their introduced ranges. Still, they can adapt to changes in temperature and humidity, allowing them to expand their ranges into new climatic conditions.
Feuerborn, C., G. Quinlan, R. Shippee, T. L. Strausser, T. Terranova, C. M. Grozinger, and H. M. Hines. 2023. Variance in heat tolerance in bumble bees correlates with species geographic range and is associated with several environmental and biological factors. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10730
Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.
Klymko, J., M. D. Schlesinger, J. H. Skevington, and B. E. Young. 2023. Low extinction risk in the flower fly fauna of northeastern North America. Journal of Insect Conservation. https://doi.org/10.1007/s10841-023-00488-6
Introduction Flower flies (Diptera: Syrphidae; also known as hoverflies) are important pollinators of wild and cultivated plants. Other pollinators such as bees have declined, and many flower flies in Europe and Chile have been documented to be threatened with extinction. The status of other flower fly faunas is currently unknown. Aims/Methods We assessed the rangewide conservation status of flower flies that occur in Northeastern North America where there is a diverse fauna of 323 native species. Over 150,000 records, drawn from a locality database compiled for a recently published field guide, additional museum records, recent field surveys, and citizen science records, informed the assessments. Results We found that a minimum of 11 species are at risk of rangewide extinction, 267 have lower extinction risk, and 45 had insufficient data to assess. Our best estimate is that 4.0% of species are at risk, assuming data-insufficient species are at risk at the same rate as data sufficient species. The range for this estimate is 3.4–17.3% at risk, assuming that none or all data-insufficient species are at risk, respectively. Discussion Factors causing extinction risk in the fauna we studied are poorly known, although habitat destruction likely explains the decline in one species. While at-risk species mostly have saprophagus or brood parasitic larvae, trophic relationships are confounded by phylogeny (the subfamilies Eristalinae and Microdontinae account for most saprophagus or brood parasitic species). The broad geographical ranges of most species likely contributed to the low rate of imperilment. Implications for insect conservation The small percentage of at-risk flower flies in northeastern North America bodes well for the health of ecosystems there. The results contrast with the situation in Europe, underscoring geographic heterogeneity in flower fly conservation status.
Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin. https://doi.org/10.1111/epp.12922
Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.
Wint, G. R. W., T. Balenghien, E. Berriatua, M. Braks, C. Marsboom, J. Medlock, F. Schaffner, et al. 2023. VectorNet: collaborative mapping of arthropod disease vectors in Europe and surrounding areas since 2010. Eurosurveillance 28. https://doi.org/10.2807/1560-7917.es.2023.28.26.2200666
Background Arthropod vectors such as ticks, mosquitoes, sandflies and biting midges are of public and veterinary health significance because of the pathogens they can transmit. Understanding their distributions is a key means of assessing risk. VectorNet maps their distribution in the EU and surrounding areas. Aim We aim to describe the methodology underlying VectorNet maps, encourage standardisation and evaluate output. Method s: Vector distribution and surveillance activity data have been collected since 2010 from a combination of literature searches, field-survey data by entomologist volunteers via a network facilitated for each participating country and expert validation. Data were collated by VectorNet members and extensively validated during data entry and mapping processes. Results As of 2021, the VectorNet archive consisted of ca 475,000 records relating to > 330 species. Maps for 42 species are routinely produced online at subnational administrative unit resolution. On VectorNet maps, there are relatively few areas where surveillance has been recorded but there are no distribution data. Comparison with other continental databases, namely the Global Biodiversity Information Facility and VectorBase show that VectorNet has 5–10 times as many records overall, although three species are better represented in the other databases. In addition, VectorNet maps show where species are absent. VectorNet’s impact as assessed by citations (ca 60 per year) and web statistics (58,000 views) is substantial and its maps are widely used as reference material by professionals and the public. Conclusion VectorNet maps are the pre-eminent source of rigorously validated arthropod vector maps for Europe and its surrounding areas.