Science Enabled by Specimen Data

Iannella, M., D’Alessandro, P., De Simone, W., & Biondi, M. (2021). Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects, 12(4), 299. doi:10.3390/insects12040299 https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Arnan, X., Angulo, E., Boulay, R., Molowny-Horas, R., Cerdá, X., & Retana, J. (2021). Introduced ant species occupy empty climatic niches in Europe. Scientific Reports, 11(1). doi:10.1038/s41598-021-82982-y https://doi.org/10.1038/s41598-021-82982-y

Exploring shifts in the climatic niches of introduced species can provide significant insight into the mechanisms underlying the invasion process and the associated impacts on biodiversity. We aim to test the phylogenetic signal hypothesis in native and introduced species in Europe by examining clim…

Pérez‐Navarro, M. Á., Serra‐Diaz, J. M., Svenning, J., Esteve‐Selma, M. Á., Hernández‐Bastida, J., & Lloret, F. (2021). Extreme drought reduces climatic disequilibrium in dryland plant communities. Oikos. doi:10.1111/oik.07882 https://doi.org/10.1111/oik.07882

High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, h…

Ellestad, P., Forest, F., Serpe, M., Novak, S. J., & Buerki, S. (2021). Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae). Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boab005 https://doi.org/10.1093/botlinnean/boab005

Although vanilla is one of the most popular flavours in the world, there is still uncertainty concerning the native distribution of the species that produces it, Vanilla planifolia. To circumscribe the native geographical extent of this economically important species more precisely, we propose a new…

Akin-Fajiye, M., & Akomolafe, G. F. (2021). Disturbance is an important predictor of the distribution of Lantana camara and Chromolaena odorata in Africa. Vegetos. doi:10.1007/s42535-020-00179-6 https://doi.org/10.1007/s42535-020-00179-6

Most studies of invasion have used climatic variables without considering the importance of disturbance on the distribution of the species. In this study, MAXENT was used to model how disturbance, in addition to climatic factors, can affect the invasion of two of the most problematic plant invaders …

Ji, Y. (2021). The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie. doi:10.1007/s13592-020-00826-6 https://doi.org/10.1007/s13592-020-00826-6

An understanding of the origin and formation of biodiversity and distribution patterns can provide a theoretical foundation for biodiversity conservation. In this study, phylogeny and biogeography analyses based on mitochondrial genomes and niche modeling based on occurrence records were performed t…

Andersen, D., Borzée, A., & Jang, Y. (2021). Predicting global climatic suitability for the four most invasive anuran species using ecological niche factor analysis. Global Ecology and Conservation, 25, e01433. doi:10.1016/j.gecco.2020.e01433 https://doi.org/10.1016/j.gecco.2020.e01433

Invasive species have a massive impact on their environment and predicting geographical zones at risk of invasion is paramount to the control of further invasions. Invasive anurans are particularly detrimental to native amphibian species, other vertebrates, and even aquaculture through competition, …

Farooq, H., Azevedo, J. A. R., Soares, A., Antonelli, A., & Faurby, S. (2020). Mapping Africa’s biodiversity: More of the same is just not good enough. Systematic Biology. doi:10.1093/sysbio/syaa090 https://doi.org/10.1093/sysbio/syaa090

Species distribution data are fundamental to the understanding of biodiversity patterns and processes. Yet, such data are strongly affected by sampling biases, mostly related to site accessibility. The understanding of these biases is therefore crucial in systematics, biogeography and conservation. …

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. doi:10.1016/j.cub.2020.10.053 https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…