Science Enabled by Specimen Data
McBride, E., I. C. Winder, and W. Wüster. 2023. What Bit the Ancient Egyptians? Niche Modelling to Identify the Snakes Described in the Brooklyn Medical Papyrus. Environmental Archaeology: 1–14. https://doi.org/10.1080/14614103.2023.2266631
The Brooklyn Papyrus is a medical treatise from Ancient Egypt (∼660–330 BCE) focusing on snakebite. Herpetologists have proposed identifications for many of the animals it describes, but some remain uncertain partly because the species no longer live in Egypt. This paper uses niche modelling to predict the palaeodistributions of ten of these snake species, to test some proposed identifications. Occurrence records and environmental variables were used to generate maximum entropy models for each species in the present day and the mid-Holocene (∼4,000 BCE). Our models performed very well, generating AUC scores ≥0.867 and successfully predicting species’ current ranges. Nine species’ predicted palaeodistributions included areas within Ancient Egypt, and four (Bitis arietans, Dolichophis jugularis, Macrovipera lebetina and Daboia mauritanica) were within modern Egypt. Daboia palaestinae was also predicted to occupy a patch of suitable habitat inside modern Egypt, but separate from the species’ core range. The tenth species, Causus rhombeatus, would have been present in kingdoms that were the Ancient Egyptians’ regular trading partners. We therefore conclude that all ten species modelled in this study could have bitten Ancient Egyptian people. Our study demonstrates the usefulness of niche modelling in informing debates about the species ancient cultures may have interacted with.
Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4
Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.
Arana, C., V. Pulido, A. Arana, A. Carlos, and L. Salinas. 2022. Distribución geográfica y abundancia poblacional de Plegadis ridgwayi, el ibis de la Puna (Threskiornithidae) con énfasis en las poblaciones del Perú. Revista Peruana de Biología 29: e22533. https://doi.org/10.15381/rpb.v29i3.22533
El ibis de la puna Plegadis ridgwayi, es una especie de Threskiornithidae que habita humedales andinos y realiza migraciones altitudinales hacia la costa. Datos propios, de GBIF, información bibliográfica y del Censo Neotropical de Aves Acuáticas (1992 a 2015) muestran que el ibis de la puna Plegadis ridgwayi se distribuye en Ecuador, Perú, Bolivia, Argentina y Chile, con las mayores densidades poblacionales en Perú y Bolivia en siete y tres localidades respectivamente, que acumulan más del 1% de la población biogeográfica. Se encuentran de 0 a 5000 m de altitud, con las mayores densidades entre 3000 a 4500 m y 0 a 500 m. La mayor incidencia de registros ocurre al sur y centro del Perú, así como costa del centro y norte del Perú. La ampliación de la distribución hacia el norte y costa peruana puede deberse a la disponibilidad ambiental y al deterioro de su hábitat andino. En cuatro humedales costeros del centro del Perú se registraron hasta 818 ibis en 2006, la gran mayoría en Pantanos de Villa y Paraíso. El número de migrantes costeros parece relacionado a la intensidad de sequías en la sierra del Perú central. La abundancia de ibis en el lago altoandino de Junín muestra una disminución histórica, con énfasis después de la sequía de 2004-2005. La expansión distribucional requiere investigar la posible hibridación con las otras especies del género antes alopátridas.
Barends, J. M., and B. Maritz. 2022. Dietary Specialization and Habitat Shifts in a Clade of Afro-Asian Colubrid Snakes (Colubridae: Colubrinae). Ichthyology & Herpetology 110. https://doi.org/10.1643/h2021058
Speciation through niche divergence often occurs as lineages of organisms colonize and adapt to new environments with novel ecological opportunities that facilitate the evolution of ecologically different phenotypes. In snakes, adaptive diversification may be driven by the evolution of traits relating to changes in their diets. Accordingly, habitatmediated differences in prey available to ancestral snakes as they colonized and occupied novel dynamic landscapes are likely to have been a strong selective agent behind the divergence and radiation of snakes across the globe. Using an ancestral reconstruction approach that considers the multivariate nature of ecological phenotypes while accounting for sampling variation between taxa, we explored how diet and macro-habitat use coevolved across a phylogeny of 67 species of Afro-Asian colubrine snakes. Our results show that the most recent common ancestor of this clade was likely a dietary generalist that occupied tropical forests in Asia. Deviations from this generalist diet to a variety of specialist diets each dominated by the utilization of single prey types repeatedly occurred as ancestral colubrines shifted from tropical forests to savanna and grassland habitats across Africa. We additionally found that dietary specialist species were on average smaller in maximum length than dietary generalists, congruent with established predator-size, preydiversity dynamics in snakes. We speculate that adaptive divergence in ancestral colubrines arose as a result of a selective regime that favored diets comprised of terrestrial prey, and that partitioning of different prey types led to the various forms of dietary specialization evident in these lineages today. Our findings provide new insights into the ecological correlates associated with the evolution of diet in snakes, thereby furthering our understanding of the driving forces behind patterns of snake diversification.
Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235
The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…
Espindola, S., E. Vázquez‐Domínguez, M. Nakamura, L. Osorio‐Olvera, E. Martínez‐Meyer, E. A. Myers, I. Overcast, et al. 2022. Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive red‐eared slider turtle. Molecular Ecology 31: 1766–1782. https://doi.org/10.1111/mec.16356
Non-native (invasive) species offer a unique opportunity to study the geographical distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Tra…
Solovyeva, D., I. Bysykatova-Harmey, S. L. Vartanyan, A. Kondratyev, and F. Huettmann. 2021. Modeling Eastern Russian High Arctic Geese (Anser fabalis, A. albifrons) during moult and brood rearing in the ‘New Digital Arctic’. Scientific Reports 11. https://doi.org/10.1038/s41598-021-01595-7
Many polar species and habitats are now affected by man-made global climate change and underlying infrastructure. These anthropogenic forces have resulted in clear implications and many significant changes in the arctic, leading to the emergence of new climate, habitats and other issues including di…
Schickele, A., P. Guidetti, S. Giakoumi, A. Zenetos, P. Francour, and V. Raybaud. 2021. Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Global Change Biology 27: 6086–6102. https://doi.org/10.1111/gcb.15896
Biological invasions represent one of the main threats to marine biodiversity. From a conservation perspective, especially in the context of increasing sea warming, it is critical to examine the suitability potential of geographical areas for the arrival of Range Expanding Introduced and Native Spec…
Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025
Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…