Science Enabled by Specimen Data

Li, L., X. Xu, H. Qian, X. Huang, P. Liu, J. B. Landis, Q. Fu, et al. 2022. Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya Y. Qu [ed.],. Diversity and Distributions. https://doi.org/10.1111/ddi.13513

Aims The tropical niche conservatism (TNC) hypothesis and the out of the tropics (OTT) hypothesis propose mechanisms generating patterns of species diversity across warm-to-cold thermal gradients at large spatial scales. These two hypotheses both integrate ecological and biogeography-related evoluti…

Zhang, N., Z. Liao, S. Wu, M. P. Nobis, J. Wang, and N. Wu. 2021. Impact of climate change on wheat security through an alternate host of stripe rust. Food and Energy Security 11. https://doi.org/10.1002/fes3.356

In the 21st century, stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is still the most devastating disease of wheat globally. Despite the critical roles of the alternate host plants, the Berberis species, in the sexual reproduction and spread of Pst, the climate change impacts on t…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Wen, A., T. Wu, X. Zhu, R. Li, X. Wu, J. Chen, Y. Qiao, et al. 2021. Changes in the spatial distribution of Bryophytes on the Qinghai–Tibet Plateau under CMIP6 future projections. Environmental Earth Sciences 81. https://doi.org/10.1007/s12665-021-10122-w

Bryophytes play important roles in high altitude–latitude ecosystem owing to their extensive geographical coverage. Particularly, the insulating effect prevent permafrost degradation with the rapidly climate warming on the QTP. However, few studies investigated how Bryophytes will react to environme…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Zhou, R., X. Ci, J. Xiao, G. Cao, and J. Li. 2021. Effects and conservation assessment of climate change on the dominant group—The genus<i>Cinnamomum</i> of subtropical evergreen broad-leaved forests. Biodiversity Science 29: 697–711. https://doi.org/10.17520/biods.2020482

常绿阔叶林的优势类群由于其个体数量多、盖度大、生物量高、生存能力强, 对维持相应生态系统的稳定起着主导作用。樟属(Cinnamomum)植物为亚热带常绿阔叶林的优势类群, 通过对其过去、当前和未来潜在分布区的研究可以了解该类群的变迁历史, 为理解亚热带常绿阔叶林动态变化提供帮助, 有助于亚热带常绿阔叶林保育策略的制定。本研究利用最大熵(MaxEnt)模型模拟了我国樟属47种植物在5个时期(末次间冰期、末次盛冰期、全新世中期、当前和未来)的潜在分布区及物种丰富度热点区域。此外, 根据樟属植物的物种丰富度热点区域与自然保护区相叠加, 对当前自然保护区的保护状态进行了评估, 尤其是为保护亚热带常绿阔…

Diao, Y., J. Wang, F. Yang, W. Wu, J. Zhou, and R. Wu. 2021. Identifying optimized on-the-ground priority areas for species conservation in a global biodiversity hotspot. Journal of Environmental Management 290: 112630. https://doi.org/10.1016/j.jenvman.2021.112630

Threatened species are inadequately represented within protected areas (PAs) across the globe. Species conservation planning may be improved by using public species-occurrence databases, but empirical evidence is limited of how that may be accomplished at local scales. We used the Three Parallel Riv…

Yi, S., C.-P. Jun, K. Jo, H. Lee, M.-S. Kim, S. D. Lee, X. Cao, and J. Lim. 2020. Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports 10. https://doi.org/10.1038/s41598-020-74994-x

Loading...

Chase, B. M., A. Boom, A. S. Carr, M. Chevalier, L. J. Quick, G. A. Verboom, and P. J. Reimer. 2019. Extreme hydroclimate response gradients within the western Cape Floristic region of South Africa since the Last Glacial Maximum. Quaternary Science Reviews 219: 297–307. https://doi.org/10.1016/j.quascirev.2019.07.006

The Cape Floristic Region (CFR) is one of the world's major biodiversity hotspots, and much work has gone into identifying the drivers of this diversity. Considered regionally in the context of Quaternary climate change, climate stability is generally accepted as being one of the major factors promo…

Cross, A. T., T. A. Krueger, P. M. Gonella, A. S. Robinson, and A. S. Fleischmann. 2020. Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation 24: e01272. https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…