Science Enabled by Specimen Data

Zhao, Y., G. A. O’Neill, N. C. Coops, and T. Wang. 2024. Predicting the site productivity of forest tree species using climate niche models. Forest Ecology and Management 562: 121936.

Species occurrence-based climate niche models (CNMs) serve as valuable tools for predicting the future ranges of species’ suitable habitats, aiding the development of climate change adaptation strategies. However, these models do not address an essential aspect - productivity, which holds economic significance for timber production and ecological importance for carbon sequestration and ecosystem services. In this study, we investigated the potential to extend the CNMs to predict species productivity under various climate conditions. Lodgepole pine (Pinus contorta Dougl. ex Loud.) and Douglas-fir (Pseudotsuga menziesii Franco.) were selected as our model species due to their comprehensive range-wide occurrence data and measurement of site productivity. To achieve this, we compared and optimized the performance of four individual modeling algorithms (Random Forest (RF), Maxent, Generalized Boosted Models (GBM), and Generalized Additive Model (GAM)) in reflecting site productivity by evaluating the effect of spatial filtering, and the ratio of presence to absence (p/a ratio) observations. Additionally, we applied a binning process to capture the overarching trend of climatic effects while minimizing the impact of other factors. We observed consistency in optimal performance across both species when using the unfiltered data and a 1:1.5 p/a ratio, which could potentially be extended to other species. Among the modeling algorithms explored, we selected the ensemble model combining RF and Maxent as the final model to predict the range-wide site productivity for both species. The predicted range-wide site productivity was validated with an independent dataset for each species and yielded promising results (R2 above 0.7), affirming our model’s credibility. Our model introduced an innovative approach for predicting species productivity with high accuracy using only species occurrence data, and significantly advanced the application of CNMs. It provided crucial tools and insights for evaluating climate change's impact on productivity and holds a better potential for informed forest management and conservation decisions.

Köhler, M., M. Romeiro‐Brito, and M. Telhe. 2024. The Cerrado through cacti. Journal of Biogeography.

Cerrado is a large and heterogeneous ecoregion in the Neotropics marked by the fire‐prone savanna vegetation, to which succulent lineages are usually not associated due to this adverse condition. However, recent studies have highlighted the importance of Cerrado as an ancestral range for the origin, dispersal and in situ diversification of remarkable lineages of South American cacti. In this perspective, we explore the implications of these occurrences in the Cerrado, shedding light on a frequently overlooked aspect of this ecoregion—the role of scattered rocky outcrop habitats acting as micro‐refuges for fire‐sensitive lineages. We show that most cacti occurrences are associated with patches of rock outcrops across the Cerrado. In contrast, when terricolous, a few disparate and not closely related species can develop underground structures or present a specialized habit that facilitates their presence as a putative response to fire—reinforcing the evolutionary lability of fire adaptation in Cerrado lineages. Despite some notable endemisms, several occurrences are from species with core distributions in adjacent ecoregions (e.g. Caatinga and Chaco), demonstrating the permeability of Cerrado, which can act concomitantly as a biogeographical barrier (especially due to its fire‐prone habitats) and as a corridor for biota interchange. Finally, we stress that Cerrado heterogeneity, often leading to different circumscriptions, is a relevant issue when studying and characterizing Neotropical biota, which must be further explored and considered to assess the evolutionary assembly of the biomes involved.

Dantas, V. L., L. C. S. Oliveira, C. R. Marcati, and J. Sonsin‐Oliveira. 2024. Coordination of bark and wood traits underlies forest‐to‐savanna evolutionary transitions. Journal of Biogeography.

Aim To test the hypothesis that adaptive shifts leading to the assembly of tropical savannas involved coordination between bark and wood traits and to understand the underlying mechanisms.LocationTropical South America.TaxonAngiosperms (woody).MethodsWe compiled data on three bark traits (total, inner and outer relative bark thickness), wood density, maximum height, five secondary xylem traits and on species' habitat information (light environment, climate, soil and fire history) for Neotropical savanna, forest and generalist species (biome groups). We tested for pairwise and multivariate associations among traits across species and if biome group and habitat conditions explained species positions along the resulting strategy axes.ResultsTraits covaried along four different axes. The first axis was consistent with a trade‐off between fire (thick barks) and shade tolerance (low bark to diameter ratio, high vessel density) and contributed to differentiate the three biome groups according to the preference for shaded environments. Forest species also differed from savanna and generalist species in a separate axis by being more resource acquisitive. Maximum height and wood density did not strongly trade‐off with bark thickness, although maximum height was negatively covaried with relative outer bark thickness. Preference for shaded conditions was the main driver of variation in the two principal strategy axes, but temperature, fire and soil sand content also explained differences in plant stature between savanna and generalist species.Main ConclusionsAllocation to bark is constrained by trade‐offs with wood, opposing shade‐tolerant and acquisitive forest species to fire‐resistant and conservative savanna species. Rather than a single strategy axis, three axes are necessary to understand the functional differences among savanna, forest and generalist species. Because two of these axes are controlled by light availability, the associated traits tend to covary in space and time, but not across species.

Ziegler, C., E. J. Martínez, A. I. Honfi, and A. V. Reutemann. 2024. Discovery of natural Paspalum L. (Poaceae) triploid hybrids near sympatric populations of Paspalum urvillei Steud. and species of Paniculata group in northeastern Argentina. Euphytica 220.

Hybridization and polyploidy are currently known as exponential factors for biodiversity. Some Paspalum species can hybridize and originate viable allopolyploids with possible agronomic use. We collected a frost resistance hybrid in north–western Misiones and determined its ploidy level, meiotic behavior, pollen viability, cytoembryology, and seed production in open and self-pollination. To elucidate its origin, we conducted a phenotypic and geographical analysis using herbarium specimens to establish its putative parental species. The hybrid was triploid, exhibiting irregular meiosis with the formation of non-viable pollen and undeveloped embryo sacs, resulting in very low seed production under both pollination conditions. Through morphological analysis, we identified Paspalum urvillei Steud. and the Paniculata group, i.e. Paspalum juergensii Hack., Paspalum umbrosum Trin., and Paspalum paniculatum L., as the putative parental species. Geographic distribution patterns suggested a possible hybridization event between P. urvillei and P. umbrosum , though further investigation is needed to precisely identify which species from the Paniculata group hybridized with P. urvillei. Future studies will help to unravel the complex genetic interactions underlying hybridization in Paspalum species and contribute to our understanding of biodiversity dynamics.

Werchan, M., B. Werchan, P. Bogawski, F. Mousavi, M. Metz, and K.-C. Bergmann. 2024. An emerging aeroallergen in Europe: Tree-of-Heaven (Ailanthus altissima [Mill.] Swingle) inventory and pollen concentrations – Taking a metropolitan region in Germany as an example. Science of The Total Environment 930: 172519.

Urban areas are often hotspots for the dissemination of non-native (invasive) plant species, some of which release (potentially) allergenic pollen. Given the high population density in cities, a considerable number of people can be regularly and potentially intensively exposed to the pollen from these plants. This study delves into the Tree-of-Heaven (Ailanthus altissima, [Mill.] Swingle), native to East Asia, which is known for its high invasiveness in temperate regions worldwide, particularly favoring urban colonization. This study explores the botanical and aerobiological dimensions of this species using the central European metropolitan region of Berlin, Germany, as a case study, and provides a comprehensive global overview of allergological insights.The number of Ailanthus trees decreased markedly from the center to the periphery of Berlin City, following a temperature gradient. The same spatial trend was mirrored by airborne Ailanthus pollen concentrations measured with volumetric spore traps (Hirst-type) at five sites using seven traps. Ailanthus pollen was most abundant around midday and in the afternoon, with concentrations tenfold higher at street level than at roof level. The Ailanthus flowering period in June and July coincided well with the pollen season. To the best of our knowledge this is the first study to investigate Ailanthus altissima pollen production. On average, 5539 pollen grains were found per anther. A literature review on the allergy relevance of Ailanthus altissima pollen indicates the high allergenic potential of pollen from this species.Considering the anticipated expansion of suitable habitats for Ailanthus owing to global warming and the allergological significance of its pollen, it is recommended to include Ailanthus pollen in routine pollen monitoring, particularly in areas colonized by this species. This comprehensive study provides new insights into a pollen taxon whose significance as an emerging aeroallergen should be factored into plant selection and greenspace management in all temperate regions.

Estrada-Sánchez, I., A. Espejo-Serna, J. García-Cruz, and A. R. López-Ferrari. 2024. Richness, distribution, and endemism of neotropical subtribe Ponerinae (Orchidaceae, Epidendreae). Brazilian Journal of Botany 47: 501–517.

The subtribe Ponerinae (Orchidaceae) includes the genera Helleriella A. D. Hawkes, Isochilus R. Brown, Nemaconia Knowles & Westc., and Ponera Lindl. Most of its species are epiphytes and usually grow on trees of the genus Quercus L. in cloud forests and temperate coniferous and broad-leaved forests; some taxa are rarely lithophytes or less frequently terrestrial. The aim of this study was to estimate the distribution of the species of the subtribe Ponerinae using ecological niche models (ENM), determine areas with highest richness and endemism rates with the occurrence data and the models obtained, and determine if the areas with highest richness and endemism recognized in this work are located within any of the conservation areas (ANPs) and/or Regiones Terrestres Prioritarias (RTPs). We reviewed 1 044 herbarium specimens from ten institutional collections, corresponding to two species of Helleriella , eleven of Isochilus , six of Nemaconia , and two of Ponera , and a geographic and taxonomic database was generated. ENM were constructed with MaxEnt 3.3; and we determine areas with highest species richness and endemism with Biodiverse 4.3. Mexico is the richest country with 21 species, followed by Guatemala with nine. The more widely distributed species are: Isochilus linearis (Jacq.) R.Br, and Nemaconia striata (Lindl.) Van den Berg, Salazar & Soto Arenas; I . oaxacanus Salazar & Soto Arenas is endemic to Mexican state of Oaxaca and N . dressleriana (Soto Arenas) van den Berg, Salazar & Soto Arenas of Morelos. The cells with higher occurrence richness and occurrence weighted endemism were located in Chiapas Highlands, and the higher occurrence of corrected weighted endemism is located in Transmexican Volcanic Belt, considered the nucleus of the Mexican Transition Zone. On the other hand, the cells with greater ENM richness and ENM weighted endemism were located in Sierra Madre del Sur, and the higher ENM corrected weighted endemism in Sierra Madre Oriental. It is suggested to change the status of the regions Cañón del Zopilote and El Tlacuache from RTPs to ANPs.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography.

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Ortíz-Martínez, A., C. P. Ornelas-García, D. A. Moo-Llanes, D. Piñero, J. A. Pérez de la Rosa, P. Peláez, and A. Moreno-Letelier. 2024. Species delimitation using multiple sources of evidence from the Pinus strobiformis-Pinus ayacahuite Species Complex. Botanical Sciences 102: 482–498.

Background: The Trans-Mexican Volcanic Belt (TMVB) in central Mexico is characterized by peaks of high altitude and geologic instability. In this zone, Pinus strobiformis and Pinus ayacahuite form a contact zone with Pinus veitchii. The taxonomical circumscription of white pines in Central Mexico has been unstable, especially regarding the status of P. veitchii. Questions: What are the species boundaries of the montane Mexican white pines species complex? Is Pinus veitchii a hybrid or an independently evolving lineage? Studied species: Pinus strobiformis, Pinus veitchii and Pinus ayacahuite species complex. Study site and dates: United States of America and Mexico from 2003 to 2022. Methods: We performed multivariate analyses on 10 morphological characters and characterized the climatic niche divergence and the genetic differentiation using SNPs. Results: Our results showed that P. veitchii is morphologically similar to P. strobiformis, but does not have intermediate morphological values with P. ayacahuite. The ecological niche differentiation was not significant.  Genetic analyses showed P. veitchii as an independent lineage with evidence of admixture with P. ayacahuite, suggesting a gene flow but not a hybrid origin. Conclusions: Two of the three lines of evidence support three independent lineages. Environmental information showed niche conservatism, morphology and genetic structure showed differentiation of all three taxa, with a greater morphological similarity between P. strobiformis and P. veitchii, and genetic analyses recovered evidence of introgression, suggesting a complex demographic history in the Trans Mexican Volcanic Belt.

Silveira, P., F. G. de Sousa, P. Böning, N. M. Maciel, J. Stropp, and S. Lötters. 2024. Do aposematic species have larger range sizes? A case study with neotropical poison frogs. Journal of Biogeography.

AbstractAimAposematic animals, i.e., those that are defended and warn potential predators through signals, are suggested to have resource‐gathering advantages against non‐aposematic ones. We here explore this in a biogeographic framework expecting that aposematic species are better dispersers, which translates into larger geographic range size.LocationSouth America.TaxonPoison frogs (Amphibia; Aromobatidae and Dendrobatidae).MethodsWe use 43 toxic and 26 non‐toxic poison frog species from the lowlands only as representatives of aposematic and non‐aposematic study organisms, respectively. Realised and potential geographic ranges are calculated using minimum convex polygon and species distribution modelling methods, respectively. Accounting for species body size and phylogeny, we test if both range and aposematism are correlated using linear mixed‐effects models.ResultsAposematic and non‐aposematic species neither differ in realised nor in potential geographic range size. There was no effect on body size.Main ConclusionsThe role of aposematism is not yet as clear as suggested and determinants of poison frog range sizes are multifaceted. A more integrative approach is needed using the information on behaviour, predation risk, and reproductive biology to assess the role of aposematism on observed species distributions. Such data are not yet available for most species, neither poison frogs nor other aposematic animals.

White, S. V., and A. M. Royer. 2024. Floral colour variation across life history and geography in Mimulus ringens (Phrymaceae). Botanical Journal of the Linnean Society.

Floral and life history traits play important roles in plant speciation. The genus Mimulus is a model system for studying speciation. It includes examples of species in which floral colour facilitates isolation through pollinator shifts, as well as life history changes that result in temporal or ecogeographic isolation. We investigate the possibility that both floral colour and life history have shifted together in a recently described, genetically distinct group within the species Mimulus ringens. Using a large, range-wide citizen science dataset, we test for geographic trends in flower colour and flowering time. We combine this with greenhouse studies in populations of known life history to test for differences in flower colour with life history. We show that darker-flowered plants are more common at higher latitudes, that annual-like populations have darker flowers, and that flowering time varies with latitude only in the subset of populations that have lighter flowers. This suggests that annual-like populations (with the earlier flowering time typical of this life history) are restricted to the northern part of the species range and may have distinct trends in flowering date.