Science Enabled by Specimen Data

Gallagher, K. M., and P. G. Albano. 2023. Range contractions, fragmentation, species extirpations, and extinctions of commercially valuable molluscs in the Mediterranean Sea—a climate warming hotspot R. Selden [ed.],. ICES Journal of Marine Science.

Abstract The Mediterranean Sea is a global hotspot of climate warming and biodiversity loss where molluscs have provided valuable ecosystem services, such as provisioning and cultural value, since pre-historic times. A high rate of warming and range shift limitations due to the semi-enclosed nature of the basin raise concerns about molluscan population persistence in future climate scenarios. We modelled the future distribution of 13 Mediterranean species of molluscs subject to industrial fisheries exploitation on both the Mediterranean and Atlantic European coasts. We tested the hypothesis that range contractions, fragmentation, and species extirpations will become increasingly severe in the Mediterranean by modelling mid-century and end-century species distributions for four IPCC climate change scenarios. Already under mild emissions scenarios, substantial range contractions and fragmentation are projected in the Mediterranean, suggesting global extinctions by end-century for most endemic species. Colder deep waters do not act as refugia, contrary to expectations. Species also occurring along the Atlantic European coasts may benefit from warming through range expansions to higher latitudes or deeper waters. Most of the modeled species are already over-exploited, but their eradication from the Mediterranean will imply substantial financial losses and a profound cultural change in coastal communities.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32.

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Kopperud, B. T., S. Lidgard, and L. H. Liow. 2022. Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ 10: e13921.

We use natural language processing (NLP) to retrieve location data for cheilostome bryozoan species (text-mined occurrences (TMO)) in an automated procedure. We compare these results with data combined from two major public databases (DB): the Ocean Biodiversity Information System (OBIS), and the Global Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in combination, we present latitudinal species richness curves using standard estimators (Chao2 and the Jackknife) and range-through approaches. Our combined DB and TMO species richness curves quantitatively document a bimodal global latitudinal diversity gradient for extant cheilostomes for the first time, with peaks in the temperate zones. A total of 79% of the georeferenced species we retrieved from TMO (N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that global location data compiled for cheilostomes should be improved with concerted effort, our study supports the view that many marine latitudinal species richness patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover, combining online biodiversity databases with automated information retrieval from the published literature is a promising avenue for expanding taxon-location datasets.

Bosso, L., S. Smeraldo, D. Russo, M. L. Chiusano, G. Bertorelle, K. Johannesson, R. K. Butlin, et al. 2022. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions.

Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this long-standing question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas , the Atlantic predator, but distinct from Pachygrapsus marmoratus , the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species’ distributions and biological invasions.

Strona, G., P. S. A. Beck, M. Cabeza, S. Fattorini, F. Guilhaumon, F. Micheli, S. Montano, et al. 2021. Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications 12.

Ecosystems face both local hazards, such as over-exploitation, and global hazards, such as climate change. Since the impact of local hazards attenuates with distance from humans, local extinction risk should decrease with remoteness, making faraway areas safe havens for biodiversity. However, isolat…

Sharifian, S., E. Kamrani, and H. Saeedi. 2021. Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman. Journal of Zoological Systematics and Evolutionary Research 59: 1620–1631.

Mangroves are an ideal habitat for brachyuran crabs because of nutritional and shelter support. Using maximum entropy (MaxEnt) modeling technique, we projected the potential global distributions of 10 dominant species of mangrove crabs from the Persian Gulf and the Sea of Oman under future climate c…

Qu, J., Y. Xu, Y. Cui, S. Wu, L. Wang, X. Liu, Z. Xing, et al. 2021. MODB: a comprehensive mitochondrial genome database for Mollusca. Database 2021.

Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…

Hughes, A. C., M. C. Orr, K. Ma, M. J. Costello, J. Waller, P. Provoost, Q. Yang, et al. 2021. Sampling biases shape our view of the natural world. Ecography 44: 1259–1269.

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

Martin, D., M. T. Aguado, M.-A. Fernández Álamo, T. A. Britayev, M. Böggemann, M. Capa, S. Faulwetter, et al. 2021. On the Diversity of Phyllodocida (Annelida: Errantia), with a Focus on Glyceridae, Goniadidae, Nephtyidae, Polynoidae, Sphaerodoridae, Syllidae, and the Holoplanktonic Families. Diversity 13: 131.

Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although …