Science Enabled by Specimen Data

Williams, C. J. R., Lunt, D. J., Salzmann, U., Reichgelt, T., Inglis, G. N., Greenwood, D. R., Chan, W., Abe‐Ouchi, A., Donnadieu, Y., Hutchinson, D. K., Boer, A. M., Ladant, J., Morozova, P. A., Niezgodzki, I., Knorr, G., Steinig, S., Zhang, Z., Zhu, J., Huber, M., & Otto‐Bliesner, B. L. (2022). African hydroclimate during the early Eocene from the DeepMIP simulations. Paleoceanography and Paleoclimatology. Portico.

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., Greenwood, D. R., Steinig, S., Conran, J. G., Hutchinson, D. K., Lunt, D. J., Scriven, L. J., & Zhu, J. (2022). Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology. Portico.

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Colli-Silva, M., Pirani, J. R., & Zizka, A. (2022). Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics, 101668.

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Pirie, M. D., Blackhall‐Miles, R., Bourke, G., Crowley, D., Ebrahim, I., Forest, F., Knaack, M., Koopman, R., Lansdowne, A., Nürk, N. M., Osborne, J., Pearce, T. R., Rohrauer, D., Smit, M., & Wilman, V. (2022). Preventing species extinctions: A global conservation consortium for Erica. PLANTS, PEOPLE, PLANET. Portico.

Societal Impact Statement Human-caused habitat destruction and transformation is resulting in a cascade of impacts to biological diversity, of which arguably the most fundamental is species extinctions. The Global Conservation Consortia (GCC) are a means to pool efforts and expertise across national boundaries and between disciplines in the attempt to prevent such losses in focal plant groups. GCC Erica coordinates an international response to extinction threats in one such group, the heaths, or heathers, of which hundreds of species are found only in South Africa's spectacularly diverse Cape Floristic Region. Summary Effectively combating the biodiversity crisis requires coordinated conservation efforts. Botanic Gardens Conservation International (BGCI) and numerous partners have established Global Conservation Consortia (GCC) to collaboratively develop and implement comprehensive conservation strategies for priority threatened plant groups. Through these networks, institutions with specialised collections and staff can leverage ongoing work to optimise impact for threatened plant species. The genus Erica poses a challenge similar in scale to that of the largest other GCC group, Rhododendron, but almost 700 of the around 800 known species of Erica are concentrated in a single biodiversity hotspot, the Cape Floristic Region (CFR) of South Africa. Many species are known to be threatened, suffering the immediate impacts of habitat destruction, invasive species, changes in natural fire regimes and climate change. Efforts to counter these threats face general challenges: disproportionate burden of in situ conservation falling on a minority of the community, limited knowledge of species-rich groups, shortfalls in assessing and monitoring threat, lack of resources for in situ and limitations of knowledge for ex situ conservation efforts and in communicating the value of biological diversity to a public who may never encounter it in the wild. GCC Erica brings together the world's Erica experts, conservationists and the botanical community, including botanic gardens, seed banks and organisations in Africa, Madagascar, Europe, the United States, Australia and beyond. We are collaboratively pooling our unique sets of skills and resources to address these challenges in working groups for conservation prioritisation, conservation in situ, horticulture, seed banking, systematic research and outreach.

Sluiter, I. R. K., Holdgate, G. R., Reichgelt, T., Greenwood, D. R., Kershaw, A. P., & Schultz, N. L. (2022). A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Dantas, & Pausas, J. G. (2022). The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications, 13(1).

Large mammal herbivores are important drivers of plant evolution and vegetation patterns, but the extent to which plant trait and ecosystem geography currently reflect the historical distribution of extinct megafauna is unknown. We address this question for South and Central America (Neotropical bio…

Freitas, C., Brum, F. T., Cássia-Silva, C., Maracahipes, L., Carlucci, M. B., Collevatti, R. G., & Bacon, C. D. (2021). Incongruent Spatial Distribution of Taxonomic, Phylogenetic, and Functional Diversity in Neotropical Cocosoid Palms. Frontiers in Forests and Global Change, 4. doi:10.3389/ffgc.2021.739468

Biodiversity can be quantified by taxonomic, phylogenetic, and functional diversity. Current evidence points to a lack of congruence between the spatial distribution of these facets due to evolutionary and ecological constraints. A lack of congruence is especially evident between phylogenetic and ta…

Alban, D. M., Biersma, E. M., Kadereit, J. W., & Dillenberger, M. S. (2021). Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Systematics and Evolution, 308(1). doi:10.1007/s00606-021-01793-w

Colobanthus (23 species) and Sagina (30–33 species) together are sister to Facchinia. Whereas Facchinia is distributed in western Eurasia, Colobanthus is almost exclusively distributed in the Southern Hemisphere, and Sagina is distributed in both hemispheres with the highest species diversity in wes…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Grebennikov, K. (2021). Ecological niche modeling to assessment of potential distribution of Neodiprion abietis (Harris, 1841) (Insecta, Hymenoptera, Diprionidae) in Eurasia. International Journal of Agricultural Sciences and Technology, 1(1), 1–7. doi:10.51483/ijagst.1.1.2021.1-7

In the article first assesses the potential distribution in Eurasia of Neodiprion abietis (Harris, 1841) first time assessed. The species id a widely distributed in North America fir and spruce defoliator, intercepted in 2016 in the Netherlands. Analysis of the literature data on the known distribut…