Science Enabled by Specimen Data

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Alban, D. M., Biersma, E. M., Kadereit, J. W., & Dillenberger, M. S. (2021). Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Systematics and Evolution, 308(1). doi:10.1007/s00606-021-01793-w https://doi.org/10.1007/s00606-021-01793-w

Colobanthus (23 species) and Sagina (30–33 species) together are sister to Facchinia. Whereas Facchinia is distributed in western Eurasia, Colobanthus is almost exclusively distributed in the Southern Hemisphere, and Sagina is distributed in both hemispheres with the highest species diversity in wes…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Grebennikov, K. (2021). Ecological niche modeling to assessment of potential distribution of Neodiprion abietis (Harris, 1841) (Insecta, Hymenoptera, Diprionidae) in Eurasia. International Journal of Agricultural Sciences and Technology, 1(1), 1–7. doi:10.51483/ijagst.1.1.2021.1-7 https://doi.org/10.51483/ijagst.1.1.2021.1-7

In the article first assesses the potential distribution in Eurasia of Neodiprion abietis (Harris, 1841) first time assessed. The species id a widely distributed in North America fir and spruce defoliator, intercepted in 2016 in the Netherlands. Analysis of the literature data on the known distribut…

López‐Delgado, J., & Meirmans, P. G. (2021). History or demography? Determining the drivers of genetic variation in North American plants. Molecular Ecology. doi:10.1111/mec.16230 https://doi.org/10.1111/mec.16230

Understanding the impact of historical and demographic processes on genetic variation is essential for devising conservation strategies and predicting responses to climate change. Recolonization after Pleistocene glaciations is expected to leave distinct genetic signatures, characterised by lower ge…

Ma, C.-S., Zhang, W., Peng, Y., Zhao, F., Chang, X.-Q., Xing, K., … Rudolf, V. H. W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12(1). doi:10.1038/s41467-021-25505-7 https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

De Oliveira, M. H. V., Torke, B. M., & Almeida, T. E. (2021). An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia. doi:10.1007/s12228-021-09668-7 https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Zhang, Y., Chen, J., & Sun, H. (2021). Alpine speciation and morphological innovations: revelations from a species-rich genus in the Northern Hemisphere. AoB PLANTS. doi:10.1093/aobpla/plab018 https://doi.org/10.1093/aobpla/plab018

Background and Aims A large number of studies have attempted to determine the mechanisms driving plant diversity and distribution on a global scale, but the diverse and endemic alpine herbs found in harsh environments, showing adaptive evolution, require more studies. Methods Here, we selected 466 s…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…