Science Enabled by Specimen Data

Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223. https://doi.org/10.3390/d16040223

Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.

Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10. https://doi.org/10.1098/rsos.230725

Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.

Higino, G. T., F. Banville, G. Dansereau, N. R. Forero Muñoz, F. Windsor, and T. Poisot. 2023. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 11: e14620. https://doi.org/10.7717/peerj.14620

Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.

Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Chornelia, A., and A. C. Hughes. 2022. The evolutionary history and ancestral biogeographic range estimation of old-world Rhinolophidae and Hipposideridae (Chiroptera). BMC Ecology and Evolution 22. https://doi.org/10.1186/s12862-022-02066-x

Background Family Rhinolophidae (horseshoe bats), Hipposideridae (leaf-nosed bats) and Rhinonycteridae (trident bats) are exclusively distributed in the Old-World, and their biogeography reflects the complex historic geological events throughout the Cenozoic. Here we investigated the origin of these families and unravel the conflicting family origin theories using a high resolution tree covering taxa from each zoogeographic realm from Africa to Australia. Ancestral range estimations were performed using a probabilistic approach implemented in BioGeoBEARS with subset analysis per biogeographic range [Old-World as whole, Australia–Oriental–Oceania (AOO) and Afrotropical–Madagascar–Palearctic (AMP)]. Result Our result supports an Oriental origin for Rhinolophidae, whereas Hipposideridae originated from the Oriental and African regions in concordance with fossil evidence of both families. The fossil evidence indicates that Hipposideridae has diversified across Eurasia and the Afro-Arabian region since the Middle Eocene. Meanwhile, Rhinonycteridae (the sister family of Hipposideridae) appears to have originated from the Africa region splitting from the common ancestor with Hipposideridae in Africa. Indomalaya is the center of origin of Rhinolophidae AOO lineages, and Indomalayan + Philippines appears to be center of origin of Hipposideridae AOO lineage indicating allopatric speciation and may have involved jump-dispersal (founder-event) speciation within AOO lineage. Wallacea and the Philippines may have been used as stepping stones for dispersal towards Oceania and Australia from the Oriental region. Multiple colonization events via different routes may have occurred in the Philippines (i.e., Palawan and Wallacea) since the Late Miocene. The colonization of Rhinolophidae towards Africa from Asia coincided with the estimated time of Tethys Ocean closure around the Oligocene to Miocene (around 27 Ma), allowing species to disperse via the Arabian Peninsula. Additionally, the number of potential cryptic species in Rhinolophidae in Southeast Asia may have increased since Plio-Pleistocene and late Miocene. Conclusion Overall, we conclude an Oriental origin for Rhinolophidae, and Oriental + African for Hipposideridae. The result demonstrates that complex historical events, in addition to species specific ecomorphology and specialization of ecological niches may shape current distributions.

Cunningham, C. X., G. L. W. Perry, D. M. J. S. Bowman, D. M. Forsyth, M. M. Driessen, M. Appleby, B. W. Brook, et al. 2022. Dynamics and predicted distribution of an irrupting ‘sleeper’ population: fallow deer in Tasmania. Biological Invasions 24: 1131–1147. https://doi.org/10.1007/s10530-021-02703-4

Sleeper populations of non-native species can remain at low abundance for decades before irrupting. For over a century, fallow deer (Dama dama) in the island state of Tasmania, Australia, remained at low abundance and close to the region in which they were released. Recently, there are indications t…

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Turak, E., A. Bush, J. Dela-Cruz, and M. Powell. 2020. Freshwater Reptile Persistence and Conservation in Cities: Insights from Species Occurrence Records. Water 12: 651. https://doi.org/10.3390/w12030651

Reptiles are rarely included in urban freshwater biodiversity monitoring and conservation. We explored the global persistence of freshwater dependent turtles, lizards, crocodilians and snakes in cities with a population greater than 100,000 using species occurrence data in online databases from a fi…

Liu, X., T. M. Blackburn, T. Song, X. Li, C. Huang, and Y. Li. 2019. Risks of Biological Invasion on the Belt and Road. Current Biology 29: 499-505.e4. https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…