Science Enabled by Specimen Data

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Sharifian, S., Kamrani, E., & Saeedi, H. (2020). Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. Journal of Thermal Biology, 92, 102692. doi:10.1016/j.jtherbio.2020.102692 https://doi.org/10.1016/j.jtherbio.2020.102692

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of m…

Deb, J. C., Forbes, G., & MacLean, D. A. (2020). Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review. doi:10.1111/mam.12210 https://doi.org/10.1111/mam.12210

North America has a diverse array of mammalian species. Model projections indicate significant variations in future climate conditions of North America, and the habitats of woodland mammals of this continent may be particularly sensitive to changes in climate.We report on the potential spatial distr…

Cardador, L., & Blackburn, T. M. (2020). A global assessment of human influence on niche shifts and risk predictions of bird invasions. Global Ecology and Biogeography. doi:10.1111/geb.13166 https://doi.org/10.1111/geb.13166

Aim: Estimating the strength of niche conservatism is key for predictions of invasion risk. Most studies consider only the climatic niche, but other factors, such as human disturbance, also shape niches. Whether occupation of human habitats in the alien range depends on the native tolerances of spec…

Bellot, S., Bayton, R. P., Couvreur, T. L. P., Dodsworth, S., Eiserhardt, W. L., Guignard, M. S., … Baker, W. J. (2020). On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist. doi:10.1111/nph.16750 https://doi.org/10.1111/nph.16750

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…

Rivera, D., Abellán, J., Palazón, J. A., Obón, C., Alcaraz, F., Carreño, E., … Johnson, D. (2020). Modelling ancient areas for date palms (Phoenix species: Arecaceae): Bayesian analysis of biological and cultural evidence. Botanical Journal of the Linnean Society, 193(2), 228–262. doi:10.1093/botlinnean/boaa011 https://doi.org/10.1093/botlinnean/boaa011

Our aim in this study is to build a model for the expansion of date palms (Phoenix spp., Arecaceae) that can be linked to domestication processes. Palaeontological and archaeobotanical evidence concerning date palm is extremely diversified around the Mediterranean Basin and in West Asia, mainly cons…

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Rotenberry, J. T., & Balasubramaniam, P. (2020). Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography. doi:10.1111/ecog.04871 https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…