Science Enabled by Specimen Data

Sheppard, C. S., and F. M. Schurr. 2018. Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

Peterson, A. T., A. Asase, D. Canhos, S. de Souza, and J. Wieczorek. 2018. Data Leakage and Loss in Biodiversity Informatics. Biodiversity Data Journal 6. https://doi.org/10.3897/bdj.6.e26826

The field of biodiversity informatics is in a massive, “grow-out” phase of creating and enabling large-scale biodiversity data resources. Because perhaps 90% of existing biodiversity data nonetheless remains unavailable for science and policy applications, the question arises as to how these existin…

Ansaldi, B. H., S. J. Franks, and J. J. Weber. 2018. The influence of environmental factors on breeding system allocation at large spatial scales. AoB PLANTS 10. https://doi.org/10.1093/aobpla/ply069

Plant breeding systems can vary widely among populations, yet few studies have investigated abiotic factors contributing to variation across a broad geographic range. Here we investigate variation in reproductive traits of Triodanis perfoliata (Campanulaceae), a species that exhibits dimorphic cleis…

Milla, R., J. M. Bastida, M. M. Turcotte, G. Jones, C. Violle, C. P. Osborne, J. Chacón-Labella, et al. 2018. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology & Evolution 2: 1808–1817. https://doi.org/10.1038/s41559-018-0690-4

The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we invest…

Wan, J.-Z., C.-J. Wang, and F.-H. Yu. 2019. Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment 652: 1071–1076. https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…

Inman, R., J. Franklin, T. Esque, and K. Nussear. 2018. Spatial sampling bias in the Neotoma paleoecological archives affects species paleo-distribution models. Quaternary Science Reviews 198: 115–125. https://doi.org/10.1016/j.quascirev.2018.08.015

The ability to infer paleo-distributions with limited knowledge of absence makes species distribution modeling (SDM) a useful tool for exploring paleobiogeographic questions. Spatial sampling bias is a known issue when modeling extant species. Here we quantify the spatial sampling bias in a North Am…

Goldstein, E. B., E. V. Mullins, L. J. Moore, R. G. Biel, J. K. Brown, S. D. Hacker, K. R. Jay, et al. 2018. Literature-based latitudinal distribution and possible range shifts of two US east coast dune grass species (Uniola paniculataandAmmophila breviligulata). PeerJ 6: e4932. https://doi.org/10.7717/peerj.4932

Previous work on the US Atlantic coast has generally shown that coastal foredunes are dominated by two dune grass species, Ammophila breviligulata (American beachgrass) and Uniola paniculata (sea oats). From Virginia northward, A. breviligulata dominates, while U. paniculata is the dominant grass so…

Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro, and F. L. Condamine. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039. https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…

Kistner, E. J., and J. L. Hatfield. 2018. Potential Geographic Distribution of Palmer Amaranth under Current and Future Climates. Agricultural & Environmental Letters 3: 170044. https://doi.org/10.2134/ael2017.12.0044

Herbicide-resistant weeds are increasingly becoming a major challenge for agricultural production worldwide. Palmer amaranth [Amaranthus palmeri (S.) Wats.] is an invasive annual forb that has recently emerged as one of the most widespread and severe agronomic weeds in the United States, due in part…

Sheffield, C., and J. Heron. 2018. A new western Canadian record of Epeoloides pilosulus (Cresson), with discussion of ecological associations, distribution and conservation status in Canada. Biodiversity Data Journal 6: e22837. https://doi.org/10.3897/bdj.6.e22837

Background: Epeoloides pilosulus, one of the rarest bees in North America, is a cleptoparasite of Macropis bees which themselves are uncommon oligoleges of oil-producing Lysimachia flowers. Only two specimens of the cleptoparasite have been reported from Canada since the 1960s, both from Nova Scotia…