Science Enabled by Specimen Data
Kawalkar, D., S. S. Manchi, and G. Quadros. 2024. The global population status and distribution of the Indian Swiftlet: Implications for Conservation. Ornis Hungarica 32: 204â219. https://doi.org/10.2478/orhu-2024-0030
Abstract The current study aims to comprehend the population status and distribution of the Indian Swiftlet (Aerodramus unicolor, family: Apodidae) using primary and secondary data. We acquired the population data from the secondary literature and presence data from open source (GBIF.org). We conducted surveys to document the breeding and foraging locations of the species in the Western Ghats, West Coast and Offshore islands of Maharashtra. After estimating the population, we used the presence data to create a model predicting species distribution in current and future scenarios. The Indian Swiftlet’s current distribution is from Southwest Maharashtra to Kerala and Sri Lanka. In future, the changing climate might restrict it to the southern Western Ghats and some pockets in Sri Lanka. Burnt Island, home to the largest known colony, deserves conservation attention. We recommend population surveys and immediate conservation efforts to ensure the survival of the Indian Swiftlet endemic to India and Sri Lanka.
MacDonald, Z. G., S. Schoville, M. Escalona, M. P. A. Marimuthu, O. Nguyen, N. Chumchim, C. W. Fairbairn, et al. 2024. A genome assembly for the Chryxus Arctic (Oeneis chryxus), the highest butterfly in North America R. Meyer [ed.],. Journal of Heredity. https://doi.org/10.1093/jhered/esae051
Abstract We describe a highly contiguous and complete diploid genome assembly for the Chryxus Arctic, Oeneis chryxus (E. Doubleday, [1849]), a butterfly species complex spanning much of northern and western North America. One subspecies, the Ivallda Arctic (O. c. ivallda), is endemic to California’s Sierra Nevada and of particular biogeographic interest and conservation concern. Extreme alpine habitats occupied by this subspecies include the summit of Mt. Whitney, California, representing the highest elevation butterfly population in North America. The assembly presented here consists of two haplotypes, 738.92 and 770.85 Mb in length, with contig N50 values of 10.49 and 10.13 Mb, scaffold N50 values of 25.35 and 25.69 Mb, scaffold L50 values of 13 and 14, and BUSCO completeness scores of 96.5 and 98.3%, respectively. More than 97% of the assembly is organized into 29 scaffolds, which likely represent whole chromosomes. This assembly is the first major genomic resource for Oeneis, providing a foundational reference for future genomic studies on the taxonomy, evolutionary history, and conservation of the genus. As part of the California Conservation Genomics Project, we will use this assembly in conjunction with short-read resequencing to resolve patterns of evolutionary differentiation, adaptive genomic variation, and gene flow among remaining O. c. ivallda populations. These data can and will be used to inform the subspecies’ conservation as warming climatic conditions continue to lead to the loss and fragmentation of alpine habitats. We also provide genome assemblies for the O. chryxus mitochondrion and a Wolbachia endosymbiont.
Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614
The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.
da Silva, C. R. B., and S. E. Diamond. 2024. Local climate change velocities and evolutionary history explain multidirectional range shifts in a North American butterfly assemblage. Journal of Animal Ecology 93: 1160–1171. https://doi.org/10.1111/1365-2656.14132
Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18‐years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast).Butterflies shifted their centroids at a mean rate of 4.87 km year−1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges.Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity.Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges.We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges.This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.
Minghetti, E., P. M. Dellapé, and S. I. Montemayor. 2024. Orsillus depressus (Heteroptera: Lygaeidae), an invasive circum-mediterranean species recently reported from America. Are the endemic and already endangered Cupressaceae trees from the Andean Region facing a new challenge? Biological Invasions. https://doi.org/10.1007/s10530-024-03313-6
Orsillus depressus , a circum-mediterranean species of seed bug that lives on several genera and species of Cupressaceae is considered a pest of these trees, has recently been recorded for the first time in America, in Argentina. As the western records of O. depressus are close to endemic Cupressaceae forests from the Andean Region, our attention is drawn to the possible risk of colonization and establishment of O. depressus on these forests, where three endemic monotipic genera are found: Austrocedrus chilensis , Fitzroya cupressoides and Pilgerodendron uviferum . Maxent Models for present and future scenarios, and Minimum Volume Ellipsoids were used, and natural pathways were explored. Orsillus depressus has shown a high adaptive capacity to environments with different climates, and considering the models predictions, there are large suitable areas for its establishment in southern Argentina and Chile. Also, the climatic space O. depressus occupies is small and in part new, and an expansion should be expected. Moreover, multiple natural pathways were recognized that would allow its ingression in areas highly suitable with endemic Cupressaceae forests.
Belotti López de Medina, C. R. 2024. Diet breadth and biodiversity in the pre-hispanic South-Central Andes (Western South America) during the Holocene: An exploratory analysis and review. The Holocene. https://doi.org/10.1177/09596836241231446
This paper presents an exploratory study on the taxonomic diversity of pre-Hispanic archaeofaunas in the South-Central Andes (SCA; western South America) from the Pleistocene-Holocene boundary to the Late-Holocene. The SCA is a complex of diverse environments and has undergone distinct climate events for the last 13,000 years, such as the occurrence of warmer and drier conditions in the Middle-Holocene. The South-Central Andean area was part of the larger Andes interaction area, which was a primary center for animal and plant domestication and the emergence of agro-pastoralist economies. Since subsistence was key to these processes, the SCA provides a relevant case study on the interactions among environment, foodways and sociocultural evolution. Taxonomic diversity was used here as a proxy for diet breadth. A total of 268 archaeofaunal assemblages were sampled from the zooarchaeological literature. Reviewed variables included the cultural chronology and spatial coordinates of the assemblages, as well as the presence and abundance of taxa at the family rank. Taxonomic diversity covered two dimensions: composition (families present in each assemblage) and structure (quantitative relationships among taxa), which was measured through richness (NTAXA), ubiquity and relative abundance (NISP based rank-order). Despite the uneven distribution of samples, the analyses revealed the following trends: (1) a moderate relationship between NTAXA and distance from coastline for most of the Holocene; (2) a potential decrease in assemblage richness for coastal ecoregions during the Late-Holocene; and (3) a generalized increase in the relative abundance of Camelidae.
Kebaïli, C., S. Sherpa, M. Guéguen, J. Renaud, D. Rioux, and L. Després. 2023. Comparative genetic and demographic responses to climate change in three peatland butterflies in the Jura massif. Biological Conservation 287: 110332. https://doi.org/10.1016/j.biocon.2023.110332
Climate is a main driver of species distributions, but all species are not equally affected by climate change, and their differential responses to similar climatic constraints might dramatically affect the local species composition. In the context of climate warming, a better knowledge of the ability of dispersal-limited and habitat-specialist species to track climate change at local scale is urgently needed. Comparing the population genetic and demographic impacts of past climate cycles in multiple co-distributed species with similar ecological requirements help predicting the community-scale response to climate warming, but such comparative studies remain rare. Here, we studied the relationship between demographic history and past changes in spatial distribution of three protected peatland butterfly species (Boloria aquilonaris, Coenonympha tullia, Lycaena helle) in the Jura massif (France), using a genomic approach (ddRAD sequencing) and species distribution modeling (SDM). We found a similar and narrow thermal niche among species, and shared demographic histories of post-glacial decline and recent fragmentation of populations. Each species functions as a single metapopulation at the regional scale, with a North-South gradient of decreasing genetic diversity that fits the local dynamics of the ice cover over time. However, we found no correlation between changes in the quantity or the quality of suitable areas and changes in effective population size over time. This suggests that species ranges moved beyond the Jura massif during the less favorable climatic periods, and/or that habitat loss and deterioration are major drivers of the current dramatic decline observed in the three species. Our findings allow better understanding how history events and contemporary dynamics shape local biodiversity, providing valuable knowledge to identify appropriate conservation strategies.
Andersen, M. K., Q. Willot, and H. A. MacMillan. 2023. A neurophysiological limit and its biogeographic correlations: Cold-induced spreading depolarization in tropical butterflies. Journal of Experimental Biology. https://doi.org/10.1242/jeb.246313
The physiology of insects is directly influenced by environmental temperature, and thermal tolerance is therefore intrinsically linked to their thermal niche and distribution. Understanding the mechanisms that limit insect thermal tolerance is crucial to predicting biogeography and range shifts. Recent studies on locusts and flies suggest that the critical thermal minimum (CTmin) follows from a loss of CNS function via a spreading depolarization. We hypothesized that other insect taxa share this phenomenon. Here we investigate whether spreading depolarization events occur in butterflies exposed to cold. Supporting our hypothesis, we find that exposure to stressful cold induced spreading depolarization in all 12 species tested. This reinforces the idea that spreading depolarization is a common mechanism underlying the insect CTmin. Furthermore, our results highlight how CNS function is tuned to match species’ environments. Further research into the physiology underlying spreading depolarization will likely elucidate key mechanisms determining insect thermal tolerance and ecology.
Robin-Champigneul, F., J. Gravendyck, H. Huang, A. Woutersen, D. Pocknall, N. Meijer, G. Dupont-Nivet, et al. 2023. Northward expansion of the southern-temperate podocarp forest during the Early Eocene Climatic Optimum: Palynological evidence from the NE Tibetan Plateau (China). Review of Palaeobotany and Palynology: 104914. https://doi.org/10.1016/j.revpalbo.2023.104914
The debated vegetation response to climate change can be investigated through palynological fossil records from past extreme climate conditions. In this context, the early Eocene (53.3 to 41.2 million years ago (Ma)) is often referred to as a model for a greenhouse Earth. In the Xining Basin, situated on the North-eastern Tibetan Plateau (NETP), this time interval is represented by an extensive and well-dated sedimentary sequence of evaporites and red mudstones. Here we focus on the palynological record of the Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma) and study the fossil gymnosperm pollen composition in these sediments. In addition, we also investigate the nearest living relatives (NLR) or botanical affinity of these genera and the paleobiogeographic implications of their occurrence in the Eocene of the NETP. To reach our objective, we complemented transmitted light microscopy with laser scanning- and electron microscopy techniques, to produce high-resolution images, and illustrate the morphological variation within fossil and extant gymnosperm pollen. Furthermore, a morphometric analysis was carried out to investigate the infra- and intrageneric variation of these and related taxa. To place the data in context we produced paleobiogeographic maps for Phyllocladidites and for other Podocarpaceae, based on data from a global fossil pollen data base, and compare these with modern records from GBIF. We also assessed the climatic envelope of the NLR. Our analyses confirm the presence of Phyllocladidites (NLR Phyllocladus, Podocarpaceae) and Podocarpidites (NLR Podocarpus, Podocarpaceae) in the EECO deposits in the Xining Basin. In addition, a comparative study based on literature suggests that Parcisporites is likely a younger synonym of Phyllocladidites. Our findings further suggest that the Phyllocladidites specimens are derived from a lineage that was much more diverse than previously thought, and which had a much larger biogeographical distribution during the EECO than at present. Based on the climatic envelope of the NLR, we suggest that the paleoclimatic conditions in the Xining Basin were warmer and more humid during the EECO. We conclude that phylloclade-type conifers typical of the southern-temperate podocarp forests, had a northward geographical expansion during the EECO, followed by extirpation.
Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100
Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.