Science Enabled by Specimen Data

Johnson, A. S., A. E. H. Bridges, and A. M. Knights. 2025. Predicting the future distribution of a commercially important clam (Ruditapes philippinarum) in a changing climate. Estuarine, Coastal and Shelf Science 320: 109307. https://doi.org/10.1016/j.ecss.2025.109307

The Manila clam, Ruditapes philippinarum, is a valuable commercial species for aquaculture, which in 2020, accounted for 24 % of global mollusc aquaculture. Given its economic importance, there is concern over whether this species may be vulnerable to the effects of climate change including changes in its distribution and sustainability. To test its vulnerability to climate change, we used Maximum Entropy (MaxEnt) modelling to predict both its current distribution and its future distribution under climate scenarios for end-of-century with focus on temperature and salinity changes. Future scenarios identified widespread local and regional changes in suitability. Across northern Europe and Alaska, a combination of continued or increased suitability for R. philippinarum was predicted. However, in the Mediterranean, and especially around Italy who are a major aquaculture producer of Manila clams, habitat suitability is predicted to decrease by more than 50 %. In Asia, especially below 20° N and above 40°N latitudes, habitat suitability is predicted to markedly increase but decrease dramatically between these latitudes. This is particularly the case along the coastline of China; the current global leaders in Manila clam production. Our results suggest the long-term sustainability of this species in countries like China and Italy may be threatened by climate change and action may be needed to conserve this species and support industry. Elsewhere, in countries like Norway, Alaska and Indonesia where increases in suitability are predicted in the future, expansion and/or investment in clam aquaculture production may represent an opportunity for economic growth and sustainable food production.

Wu, D., C. Liu, F. S. Caron, Y. Luo, M. R. Pie, M. Yu, P. Eggleton, and C. Chu. 2024. Habitat fragmentation drives pest termite risk in humid, but not arid, biomes. One Earth 7: 2049–2062. https://doi.org/10.1016/j.oneear.2024.10.003

Predicting global change effects poses significant challenges due to the intricate interplay between climate change and anthropogenic stressors in shaping ecological communities and their function, such as pest outbreak risk. Termites are ecosystem engineers, yet some pest species are causing worldwide economic losses. While habitat fragmentation seems to drive pest-dominated termite communities, its interaction with climate change effect remains unknown. We test whether climate and habitat fragmentation interactively alter interspecific competition that may limit pest termite risk. Leveraging global termite co-occurrence including 280 pest species, we found that competitively superior termite species (e.g., large bodied) increased in large and continuous habitats solely at high precipitation. While competitive species suppressed pest species globally, habitat fragmentation drove pest termite risk only in humid biomes. Unfortunately, hu- mid tropics have experienced vast forest fragmentation and rainfall reduction over the past decades. These stressors, if not stopped, may drive pest termite risk, potentially via competitive release.

Saito, T., S. Ito, R. T. S. Tanchangya, and S. M. Shariar. 2024. Current status of the invasion of Meghimatium bilineatum (W.H. Benson, 1842) and M. pictum (Stoliczka, 1873) (Philomycidae: Gastropoda), with the first record of M. pictum from Bangladesh based on molecular data. Archiv für Molluskenkunde International Journal of Malacology 153: 33–60. https://doi.org/10.1127/arch.moll/153/033-060

To address the challenge of biological-invasion management, it is imperative to accurately identify and comprehend the native and non-native distribution of introduced species. This study focuses on documenting the invasion status of 2 invasive land slugs, Meghimatium bilineatum (W.H. Benson, 1842) and M. pictum (Stoliczka, 1873), which have the potential to negatively impact native ecosystems, agricultural production, and human health. By conducting an exhaustive literature review and molecular examination, we identified M. bilineatum in 15 countries and regions, of which 5 are introductions and 3 potential introductions. Similarly, M. pictum was found in 14 countries and regions, with 2 introduc- tions and 2 potential introductions, including 1 newly recorded country, Bangladesh. These regions are rich in biodiversity, including World Heritage Sites, warranting careful assessment of the impact of these slugs on biological conservation. On the other hand, many countries and regions lack sufficient data to conclusively determine the native or non-native status of these slugs, and in their native ranges Meghimatium species may even be considered conservation targets. Additionally, taxonomic challenges further complicate this issue. Thus, comprehensive genetic and taxonomic studies encompassing genome-wide information are essential to enhance our understanding of these 2 invasive slugs.

Silveira, P., F. G. de Sousa, P. Böning, N. M. Maciel, J. Stropp, and S. Lötters. 2024. Do aposematic species have larger range sizes? A case study with neotropical poison frogs. Journal of Biogeography. https://doi.org/10.1111/jbi.14843

AbstractAimAposematic animals, i.e., those that are defended and warn potential predators through signals, are suggested to have resource‐gathering advantages against non‐aposematic ones. We here explore this in a biogeographic framework expecting that aposematic species are better dispersers, which translates into larger geographic range size.LocationSouth America.TaxonPoison frogs (Amphibia; Aromobatidae and Dendrobatidae).MethodsWe use 43 toxic and 26 non‐toxic poison frog species from the lowlands only as representatives of aposematic and non‐aposematic study organisms, respectively. Realised and potential geographic ranges are calculated using minimum convex polygon and species distribution modelling methods, respectively. Accounting for species body size and phylogeny, we test if both range and aposematism are correlated using linear mixed‐effects models.ResultsAposematic and non‐aposematic species neither differ in realised nor in potential geographic range size. There was no effect on body size.Main ConclusionsThe role of aposematism is not yet as clear as suggested and determinants of poison frog range sizes are multifaceted. A more integrative approach is needed using the information on behaviour, predation risk, and reproductive biology to assess the role of aposematism on observed species distributions. Such data are not yet available for most species, neither poison frogs nor other aposematic animals.

Wu, R., Y. Zou, S. Liao, K. Shi, X. Nan, H. Yan, J. Luo, et al. 2024. Shall we promote natural history collection today?—Answered by reviewing Ernest Henry Wilson’s plant collection process in China. Science of The Total Environment 915: 170179. https://doi.org/10.1016/j.scitotenv.2024.170179

Plant diversity exploration needs to be accelerated because many species will go extinct before their discovery and description, and many species-rich regions remain poorly studied. However, most contemporary plant collections prefer to focus on a specific group, which hinders the exploration and conservation of plant diversity. Therefore, we need an alternative approach to the dilemma at hand. The comprehensive Natural History Collection (NHC), which existed throughout the pinnacle of biodiversity exploration in the 20th century could be considered. We explore Ernest Henry Wilson’s (one of the most successful naturalists in the 20th) plant collections in China as a case to illustrate the advantages of NHC and discuss whether NHC deserves to be promoted again today. From multiple sources, we gathered 19,218 available specimen records of 11,884 collecting numbers assigned and analyzed the collected species, the collection's nature, and restored four routes of his explorations. Results reveal that Wilson's specimens were collected from 28 prefecture-level cities and 38 county-level regions of 7 provinces or municipalities, they belong to 200 families, 1046 genera, 3794 species, and 342 infraspecific taxa, approximately 41 %, 22 %, 10 %, 5 % of Chinese plant families, genera, species, and infraspecific taxa respectively. The Wilson case study shows that NHC is particularly effective in emphasizing species discovery and conservation, recording ecological information, understanding a region's flora, and developing landscape applications. Therefore, we strongly advocate for the expansion of natural history collections in species-rich regions. Furthermore, we recommend the employment of specialized collectors, the enlistment of international cooperation, and the standardization of guidelines for future NHCs.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Chaudhary, C., J. M. Alfaro-Lucas, M. V. P. Simões, A. Brandt, and H. Saeedi. 2023. Potential geographic shifts in the coral reef ecosystem under climate change. Progress in Oceanography 213: 103001. https://doi.org/10.1016/j.pocean.2023.103001

The coral reefs are the most diverse marine ecosystem in the world. Considering its contribution as a natural resource for humanity and global biodiversity, it is critical to understand its response to climatic change. To date, no global predictions have been made about potential ecosystem changes in relation to its inhabiting species. Predicting changes in species' climatic suitability under increasing temperature and comparing them among species would be the first step in understanding the geographic and taxonomic coherence and discrepancies that may occur within the ecosystem. Using 57 species-specific global climate suitability models (of corals, molluscs, fish, crustaceans, and polychaetes) under present and future climate scenarios (RCP 4.5 and 8.5), we compared the potential coherence and differences and their cumulative impact on the ecosystem in warm, cold, shallow, and deep waters.Under the climatic scenarios, nearly 90% of 30 warm-water species were predicted to lose their suitability in the parts of the Indo-west Pacific, the Coast of Northern Australia, the South China Sea, the Caribbean Sea, and the Gulf of Mexico, resulting in the overall southward shift in their distributions. In contrast, a mixed response occurred in 27 cold-water species, with most northern temperate/boreal ones increasing their suitability in the Arctic Ocean and the Arctic species declining overall. We noticed that irrespective of their taxonomic group, the species with wider distribution ranges (thermal and geographic) had larger predicted gains in their suitability than their stenothermal counterparts, suggesting an increase of generalist species and a decline of specialist (endemic) species of the ecosystem under a warming climate.Our coherent projections of species' climatic suitability in warm and cold habitats of the tropics, temperate, boreal, and the Arctic, represent significant taxonomic groups of the ecosystem. This might indicate mass extinction risk (local– in the tropics and northern temperate regions, and overall– in the Arctic) in native habitats and a high species turnover across the ecosystem under a warming climate. This may also destabilise predator–prey dynamics in the ecosystem, especially if foraging specialists dominate coral food webs and adversely affect the associated countries. Our global projections highlight the regions of species’ potential loss and gain; stakeholders could use the information to protect biodiversity and maintain human well-being.

Nolasco-Soto, J., J. González-Astorga, A. Espinosa de los Monteros, and M. E. Favila. 2023. Evolutionary history and diversity in the ball roller beetle Canthon cyanellus. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.1066439

To understand the evolutionary history of species, it is necessary to know the mechanisms for reproductive isolation, divergence-time between populations, and the relative action of the evolutionary forces (e.g., mutation, genetic drift, gene flow) within and between populations of the same, or closely related species. Although Canthon is one of the more diverse genera of neotropical beetles, insufficient research has been done to comprehend the divergent patterns that explain its speciation process. The absence of diagnostic morphological characters and the wide geographic variation of qualitative traits in Scarabaeinae obscures species delimitation, genealogical limits between populations, and its taxonomy. Canthon cyanellus is one of the best-known species in ecological and evolutionary aspects. It is a widely distributed species in the tropical forests of America. Also, the current deforestation has facilitated its incursion into open areas. Individuals from different populations have similar morphological characters but show wide variation in body color throughout their distribution, which makes it difficult to delimit the subspecies that comprise it. Recently, studies have been carried out to elucidate the pre-and postzygotic isolation mechanisms between populations and the historical biogeographical processes favoring cladogenesis events during the Pleistocene. Morphological variation of the male genitalia does not correspond to the phylogeographic structure. However, the morphological differences in one of the pieces of the endophallic sclerites have allowed a preliminary delimitation of some genetically differentiated clades. Finally, we consider that the joint analysis of traditional morphological taxonomy and phylogeography is important to understand the speciation process in the C. cyanellus complex.

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538. https://doi.org/10.1016/j.isci.2022.105538

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.