Science Enabled by Specimen Data

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Newbold, T., Oppenheimer, P., Etard, A., & Williams, J. J. (2020). Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology & Evolution. doi:10.1038/s41559-020-01303-0 https://doi.org/10.1038/s41559-020-01303-0

Global biodiversity is undergoing rapid declines, driven in large part by changes to land use and climate. Global models help us to understand the consequences of environmental changes for biodiversity, but tend to neglect important geographical variation in the sensitivity of biodiversity to these …

Mejía-Falla, P. A., Castro, E., Bolaños, N., Caldas, J. P., Ballesteros, C., Bent-Hooker, H., … Navia, A. F. (2020). Richness and distribution patterns of elasmobranchs in the San Andres, Providencia and Santa Catalina Archipelago: is this area a hotspot of these species in the greater Caribbean? Environmental Biology of Fishes. doi:10.1007/s10641-020-01029-9 https://doi.org/10.1007/s10641-020-01029-9

Hotspots identification can be used to establish protected or priority areas for conservation at different geographic scales. We aimed to determine if San Andres, Providencia and Santa Catalina Archipelago could be considered as a hotspot of elasmobranch diversity within the Greater Caribbean. For t…

Chollett, I., & Robertson, D. R. (2020). Comparing biodiversity databases: Greater Caribbean reef fishes as a case study. Fish and Fisheries. doi:10.1111/faf.12497 https://doi.org/10.1111/faf.12497

There is a widespread need for reliable biodiversity databases for science and conservation. Among the many public databases available, we lack guidance as to how their data quality varies. Here, we compare species distribution data for a well known regional reef fish fauna extracted from five globa…

Sharifian, S., Kamrani, E., & Saeedi, H. (2020). Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. Journal of Thermal Biology, 92, 102692. doi:10.1016/j.jtherbio.2020.102692 https://doi.org/10.1016/j.jtherbio.2020.102692

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of m…

Romero, D., Ornosa, C., & Vargas, P. (2020). Where and why? Bees, snail shells and climate: Distribution of Rhodanthidium (Hymenoptera: Megachilidae) in the Iberian Peninsula. Entomological Science. doi:10.1111/ens.12420 https://doi.org/10.1111/ens.12420

Species distribution patterns are widely studied through species distribution models (SDMs), focusing mostly on climatic variables. Joint species distribution models (JSDMs) allow inferring if other factors (biotic interactions, shared phylogenetic history or other unmeasured variables) can also hav…

Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L., & Diesmos, A. C. (2020). Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Scientific Reports, 10(1). doi:10.1038/s41598-020-64568-2 https://doi.org/10.1038/s41598-020-64568-2

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hyla…

Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., & Genner, M. J. (2020). Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology. doi:10.1016/j.cub.2020.02.043 https://doi.org/10.1016/j.cub.2020.02.043

Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at…

Arfianti, T., & Costello, M. (2020). Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity. Marine Ecology Progress Series, 638, 83–94. doi:10.3354/meps13272 https://doi.org/10.3354/meps13272

Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemici…

Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., & Cheung, W. W. L. (2020). Projecting global mariculture diversity under climate change. Global Change Biology. doi:10.1111/gcb.14974 https://doi.org/10.1111/gcb.14974

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture’s substantial contribution to global seafood production and its growing significance in recent decades, it…