Science Enabled by Specimen Data

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2021). Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 12(3). doi:10.1002/ecs2.3422 https://doi.org/10.1002/ecs2.3422

A key assumption in species distribution modeling (SDM) with presence‐background (PB) methods is that sampling of occurrence localities is unbiased and that any sampling bias is proportional to the background distribution of environmental covariates. This assumption is rarely met when SDM practition…

Martin, D., Aguado, M. T., Fernández Álamo, M.-A., Britayev, T. A., Böggemann, M., Capa, M., … Teixeira, M. A. L. (2021). On the Diversity of Phyllodocida (Annelida: Errantia), with a Focus on Glyceridae, Goniadidae, Nephtyidae, Polynoidae, Sphaerodoridae, Syllidae, and the Holoplanktonic Families. Diversity, 13(3), 131. doi:10.3390/d13030131 https://doi.org/10.3390/d13030131

Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although …

Guevara, L. (2021). The legacy of the fieldwork of E. W. Nelson and E. A. Goldman in Mexico (1892–1906) for research on poorly known mammals. History and Philosophy of the Life Sciences, 43(1). doi:10.1007/s40656-021-00386-7 https://doi.org/10.1007/s40656-021-00386-7

More than a century ago, Edward W. Nelson and Edward A. Goldman spent 14 years (1892−1906) traveling across much of Mexico in one of the most critical biological expeditions ever undertaken by two naturalists. This long-term survey was a cornerstone in Mexican mammalogy development; however, their s…

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. doi:10.1016/j.cub.2020.10.053 https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…

Seaborn, T., Goldberg, C. S., & Crespi, E. J. (2020). Drivers of distributions and niches of North American cold‐adapted amphibians: evaluating both climate and land use. Ecological Applications. doi:10.1002/eap.2236 https://doi.org/10.1002/eap.2236

Species distribution estimates are often used to understand the niche of a species; however, these are often based solely on climatic predictors. When the influences of biotic factors are ignored, erroneous inferences about range and niche may be made. We aimed to integrate climate data with a uniqu…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Fazlioglu, F., Wan, J. S. H., & Chen, L. (2020). Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia. doi:10.1007/s10750-020-04403-x https://doi.org/10.1007/s10750-020-04403-x

Consequences of global climate change on mangrove habitats are ambiguous owing to multifaceted factors. In this study, we examined historical occurrences of ten common mangrove species and quantified the rate of latitudinal shift as a possible response to climate change. The Global Biodiversity Info…

Deb, J. C., Forbes, G., & MacLean, D. A. (2020). Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review. doi:10.1111/mam.12210 https://doi.org/10.1111/mam.12210

North America has a diverse array of mammalian species. Model projections indicate significant variations in future climate conditions of North America, and the habitats of woodland mammals of this continent may be particularly sensitive to changes in climate.We report on the potential spatial distr…