Science Enabled by Specimen Data
Romanov, R. E., S. Dragićević, U. Raabe, V. Biberdžić, D. Salemi, B. Papp, and A. Troia. 2025. New data on the distribution, ecology and syntaxonomy of Riella macrocarpa (Riellaceae, Marchantiophyta). Vegetation Ecology and Diversity 62: 1–12. https://doi.org/10.3897/ved.139958
AbstractIn this paper, we present the first reports of liverwort Riella macrocarpa in Montenegro, Sicily, and Greece.The species has been documented as occurring in former salt pans in Montenegro and Attica, in natural brackish ponds in Sicily, and in a flooded parking area in the Peloponnese. In these environments Riella macrocarpa was found growing either in monospecific communities or associated with charophytes, green algae and a few species of vascular plants. Notes on its habitats and communities based on our personal observations are presented. New distributional data on this species seems to confirm that R. macrocarpa is widespread throughout the Mediterranean, while its sister species, R. helicophylla s.s., appears to be rarer, reported so far only in the western Mediterranean countries. The mutation of the name Rielletum helicophyllae Cirujano, Velayos et García-Mur. 1993 (to Rielletum macrocarpae Cirujano, Velayos et García-Mur. mut. Romanov et al. nom. mut. nov.) is suggested here in agreement with the International Code of Phytosociological Nomenclature. Riella macrocarpa, already included in the Italian Red List (under R. helicophylla), is also a candidate for inclusion in the national Red Lists of Montenegro and Greece. Although this liverwort often occurs within protected areas, monitoring and conservation efforts are essential to better understand the risks and threats that the species and its habitat face.
Buck, W. R., and B. Goffinet. 2024. A new checklist of the mosses of the continental United States and Canada1. The Bryologist 127. https://doi.org/10.1639/0007-2745-127.4.484
The checklist includes a listing of the genera and species of North American Bryophyta thought to occur in the continental United States and Canada. The floras of Mexico, Hawaii and Greenland are not included. The current list recognizes 1565 species, 12 subspecies, 34 varieties and one form (for a total of 1612 taxa) in 366 genera and 100 families. As a preface to the list, a systematic arrangement of the families and included genera for North America is presented. Many changes from the previous checklist are documented via footnotes that provide references to where changes were made. Only synonymy since the previous checklist is included. Twenty nomenclatural changes are made. These include 19 new combinations: Bryum brassicoides (≡ Gemmabryum brassicoides), B. pacificum (≡ Ptychostomum pacificum), B. torenii (≡ Imbribryum torenii), B. vinosum (≡ Gemmabryum vinosum), Chionoloma maragniphyllum (≡ Oxystegus maragniphyllus), Lescuraea tribulosa (≡ Pseudoleskea tribulosa), Pterygoneurum 3kieneri (≡ P. subsessile var. kieneri Habeeb), Pylaisiadelpha canadensis (≡ Brotherella canadensis), Streblotrichum convolutum var. eustegium (≡ Barbula eustegia), Streblotrichum convolutum var. gallinula (≡ Barbula convoluta var. gallinula), Voitia angustata (≡ Splachnum angustatum), V. mnioides (≡ Splachnum mnioides), V. pallida (≡ Tetraplodon pallidus), V. paradoxa (≡ Splachnum paradoxum), V. urceolata (≡ Splachnum urceolatum), Warnstorfia badia (≡ Hypnum badium), W. straminea (≡ Hypnum stramineum), W. straminea var. patens (Lindb.) (≡ Amblystegium stramineum var. patens), W. wickesiae (≡ Calliergon wickesiae). A new order is also introduced: Rhizogemmales W.R.Buck & Goffinet (≡ Rhizogemmaceae Bonfim Santos, Siebel & Fedosov).
OLARIAGA, I., R. MÁRQUEZ-SANZ, S. P. GORJÓN, J. C. ZAMORA, and I. SALCEDO. 2024. Hymenochaete ametzii sp. nov. (Hymenochaetales, Basidiomycota), an endangered bark-dwelling species inhabiting old Quercus pyrenaica trees from the Iberian Peninsula. Phytotaxa 669: 194–210. https://doi.org/10.11646/phytotaxa.669.3.2
Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria. Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Rayos, A. L., M. A. M. Renner, and S. Y. W. Ho. 2024. The Neotropical endemic liverwort subfamily Micropterygioideae had circum‐Antarctic links to the rest of the Lepidoziaceae during the early Cretaceous. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11066
Lepidoziaceae are the third‐largest family of liverworts, with about 860 species distributed on all continents. The evolutionary history of this family has not been satisfactorily resolved, with taxa such as Micropterygioideae yet to be included in phylogenetic analyses. We inferred a dated phylogeny of Lepidoziaceae using a data set consisting of 13 genetic markers, sampled from 147 species. Based on our phylogenetic estimate, we used statistical dispersal‐vicariance analysis to reconstruct the biogeographic history of the family. We inferred a crown age of 197 Ma (95% credible interval 157–240 Ma) for the family in the Australian region, with most major lineages also originating in the same region. Micropterygioideae are placed as the sister group to Lembidioideae, with these two lineages diverging from each other about 132 Ma in the South American–Australian region. With South America and Australia being connected through Antarctica at the time, our results suggest a circum‐Antarctic link between Micropterygioideae and the rest of the family. Crown Micropterygioideae were inferred to have arisen 45 Ma in South America before the continent separated from Antarctica. Extinction from southern temperate regions might explain the present‐day restriction of Micropterygioideae to the Neotropics. Our study reveals the influence of past geological events, such as continental drift, on the evolution and distribution of a widespread and diverse family of liverworts.
Alfaro-Saiz, E., A. B. Fernández-Salegui, and C. Acedo. 2023. Plant Conservation in the Midst of Energy Transition: Can Regional Governments Rise to the Challenge? Land 12: 2003. https://doi.org/10.3390/land12112003
Within the expanding wind energy projects context, this study explores the intricate relationship between biodiversity conservation and wind power development in the Cantabrian Mountains. By analyzing data from 1107 UTM grids measuring 10 × 10 km, we have identified 378 endangered vascular plant taxa and 36 bryophytes, including 135 that are regional endemics. Wind power complexes pose a significant risk of irreversible impacts on plant conservation zones and their integrity if proper management informed by the best available scientific knowledge is not implemented. This study introduces the concept of very important plant areas (VIPAs) as a crucial tool for identifying priority conservation areas. A total of 60% of the UTM grids were classified in the “high conservation value” category. Among the endangered species within the region, only 11% are afforded protection at the European level and 17% at the national level, leaving a key role for regional governments with heterogeneous lists. Our findings highlight the urgent need for legislation that accommodates updates to protected species lists, ensuring the inclusion of high-risk taxa and legally binding mechanisms at various administrative tiers. The proposed method relies on quantifiable and repeatable criteria, making it adaptable for application in other territories and for broader land use planning purposes.
Suicmez, B., and M. Avci. 2023. Distribution patterns of Quercus ilex from the last interglacial period to the future by ecological niche modeling. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10606
The plants' geographic distribution is affected by natural or human‐induced climate change. Numerous studies at both the global and regional levels currently focus on the potential changes in plant distribution areas. Ecological niche modeling can help predict the likely distribution of species according to environmental variables under different climate scenarios. In this study, we predicted the potential geographic distributions of Quercus ilex L. (holm oak), a keystone species of the Mediterranean ecosystem, for the Last Interglacial period (LIG: ~130 Ka), the Last Glacial Maximum (LGM: ~22 Ka), mid‐Holocene (MH: ~6 Ka), and future climate scenarios (Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios) for 2050–2070 obtained from CCSM4 and MIROC‐ESM global climate scenarios respectively. The models were produced with algorithms from the R‐package “biomod2” and assessed by AUC of the receiver operating characteristic plot and true skill statistics. Aside from BIOCLIM (SRE), all model algorithms performed similarly and produced projections that are supported by good evaluation scores, although random forest (RF) slightly outperformed all the others. Additionally, distribution maps generated for the past period were validated through a comparison with pollen data acquired from the Neotoma Pollen Database. The results revealed that southern areas of the Mediterranean Basin, particularly coastal regions, served as long‐term refugia for Q. ilex, which was supported by fossil pollen data. Furthermore, the models suggest long‐term refugia role for Anatolia and we argue that Anatolia may have served as a founding population for the species. Future climate scenarios indicated that Q. ilex distribution varied by region, with some areas experiencing range contractions and others range expands. This study provides significant insights into the vulnerability of the Q. ilex to future climate change in the Mediterranean ecosystem and highlights the crucial role of Anatolia in the species' historical distribution.
Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022
Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.