Science Enabled by Specimen Data

Tu, W., Y. Du, Y. E. Stuart, Y. Li, Y. Wang, Q. Wu, B. Guo, and X. Liu. 2024. Biological invasion is eroding the unique assembly of island herpetofauna worldwide. Biological Conservation 300: 110853. https://doi.org/10.1016/j.biocon.2024.110853

Island ecosystems have significant conservation value owing to their higher endemic biotas. Moreover, studies of regional communities that compare differences in species composition (species dissimilarity) among islands and the mainland suggest that community assembly on islands is different from that on the mainland. However, the uniqueness of island biotic assembly has been little studied at the global scale, nor have phylogenetic information or alien species been considered in these patterns. We evaluate taxonomic and phylogenetic change from one community to the next, focusing on differences in species composition between mainland-mainland (M-M) pairs compared to differences between mainland-island pairs (M-I) and between island-island pairs (I-I), using herpetofauna on islands and adjacent mainland areas worldwide. Our analyses detect greater taxonomic and phylogenetic dissimilarity for M-I and I-I comparisons than predicted by M-M model, indicating different island herpetofauna assembly patterns compared with mainland counterparts across the world. However, this higher M-I dissimilarity has been significantly decreased after considering alien species. Our results provide global evidence on the importance of island biodiversity conservation from the aspect of both the taxonomic and phylogenetic uniqueness of island biotic assembly.

Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379

We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.

Ascanio, A., J. T. Bracken, M. H. H. Stevens, and T. Jezkova. 2024. New theoretical and analytical framework for quantifying and classifying ecological niche differentiation. Ecological Monographs. https://doi.org/10.1002/ecm.1622

Ecological niche differentiation is a process that accompanies lineage diversification and community assembly. Traditionally, the degree of niche differentiation is estimated by contrasting niche hypervolumes of two taxa, reconstructed using ecologically relevant variables. These methods disregard the fact that niches can shift in different ways and directions. Without means of discriminating between different types of niche differentiation, important evolutionary and ecological patterns may go unrecognized. Herein, we introduce a new conceptual and methodological framework that allows quantification and classification of niche differentiation and divergence between taxa along single niche axis. This new method, the Niche Divergence Plane, is based on species' responses to an underlying environmental gradient, from which we derive a two‐dimensional plane defined by two indices, niche exclusivity and niche dissimilarity. These two indices identify the proportion of the environmental gradient that is unique to each species, that is, how much of the environmental gradient species do not share (niche breadth exclusivity) and how different the species' responses are along the environmental gradient (niche dissimilarity). Thus, the latter can also be seen as a measure of the differences in niche preference or importance, even when there is significant overlap in niche breadth (i.e., low niche exclusivity). Based on the position of the two indices on the divergence plane, we can distinguish niche conservatism from four other general types of niche divergence: hard, soft, weighted, and nested. We demonstrate that the Niche Divergence Plane complements traditional measures of niche similarity (e.g., Schoener's D or Hellinger's I). Additionally, we show an empirical comparison using the Niche Divergence Plane framework on two Ambystoma salamanders. Overall, we demonstrate that the Niche Divergence Plane is a versatile tool that can be used to complement and expand previous methods of ecological niche comparisons and the study of ecological niche divergence.

Ortiz-Acosta, M. Á., J. Galindo-González, A. A. Castro-Luna, and C. Mota-Vargas. 2023. Potential distribution of marsupials (Didelphimorphia: Didelphidae) in Mexico under 2 climate change scenarios M. Vieira [ed.],. Journal of Mammalogy. https://doi.org/10.1093/jmammal/gyad101

Climate change is one of the main threats to biodiversity in the 21st century. However, the effects that it may have on different mammal species are unknown, making it difficult to implement conservation strategies. In this paper, we used species distribution models (SDM) to assess the effect of global climate change on the potential distribution of the 8 of the 9 marsupial species in Mexico, and analyzed their distribution in the current system of natural protected areas (NPAs). We used presence records for each species and bioclimatic variables from the present and the future (2050 and 2080) with 2 contrasting possible scenarios (representative concentration pathways RCP 4.5 and 8.5). We found that Tlacuatzin canescens would have the most stable potential range under any climate change scenario, while the remaining species (Caluromys derbianus, Chironectes minimus, Didelphis marsupialis, D. virginiana, Philander opossum, Marmosa mexicana, and Metachirus nudicaudatus) would undergo notable range losses in the future, though there would not only be losses—according to our SDMs, for all species there would be some range gain under the different climate scenarios, assuming the vegetation cover remained. The current system of NPAs in Mexico currently protects and under the 2 future scenarios would protect less than 20% of the potential range of marsupials, so a reevaluation of their areas beyond the NPAs is highly recommended for the long-term conservation of this group. Our results provide relevant information on the estimated effects of global climate change on marsupials, allowing us to design more effective methodologies for the protection of this portion of the mammalian fauna in Mexico.

Long, J. M., and L. Seguy. 2023. Global Status of Non-Native Largemouth Bass (Micropterus Salmoides, Centrachidae) and Smallmouth Bass (Micropterus Dolomieu, Centrarchidae): Disparate Views as Beloved Sportfish and Feared Invader. Reviews in Fisheries Science & Aquaculture: 1–18. https://doi.org/10.1080/23308249.2023.2244078

Largemouth Bass (Micropterus salmoides, LMB) and Smallmouth Bass (Micropterus dolomieu, SMB) are among the most highly invasive species across the globe, but are simultaneously among the most highly sought-after game fish. To explain these disparate views, data on invasive status and angling participation of these two species were compiled at the country level. Largemouth Bass were found established in 62 countries on five continents, whereas SMB were found established in only nine countries on the same five continents. Invasive risk assessments were disparate between the species, with more for SMB (N = 29) than LMB (N = 27). In every instance save one (Finland), SMB were considered “invasive” compared to LMB, which were “invasive” in only 74% of assessments. Twenty-eight countries with non-native black bass have groups that participate in high-profile fishing tournament such the Black Bass World Championship, BASS (Bass Anglers Sportsmans Society) Nation, and Major League Fishing. Most countries with fishing tournaments occur in countries with established LMB populations than in countries with established SMB populations, suggesting a greater economic importance on LMB fishing. The struggle between conserving biodiversity and relying upon economic benefits from fishing for introduced species is a wicked problem likely to continue into the future.

Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881. https://doi.org/10.3390/d15070881

Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.

Emiroğlu, Ö., S. Aksu, S. Başkurt, J. R. Britton, and A. S. Tarkan. 2023. Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions. https://doi.org/10.1007/s10530-023-03016-4

Freshwater ecosystems are highly vulnerable to the detrimental impacts of both biological invasions and climate change. Piscivorous alien fishes drive populations of small-bodied native fishes to extinction and warming is already driving extreme temperature events in lakes and rivers globally. Here, we use Ecological Niche Modelling (ENM) to predict how climate change will alter the geographical space of six alien fishes and five native fish genera (which include multiple endemic species) in Turkey, a hotspot of freshwater fish diversity. The models predicted that the geographical space of the alien fishes already present in Turkey would generally increase (including pikeperch Sander lucioperca and perch Perca fluviatilis ), but with the most substantial increases in largemouth bass Micropterus salmoides , a species not yet present in Turkey but that is invasive in countries nearby and is highly popular for sport angling. For the native fish genera, general predictions were for reduced geographical space, especially in the south and east of the country, suggesting the endemic species will become increasingly imperilled in future. Their populations will also be at increasing risk of deleterious impacts from the alien piscivores, as the predictions were also for increasing overlaps in the geographical space of both the alien fishes and native fish genera. These predictions suggest that the conservation of these endemic species need to consider measures on preventing both the introduction of alien species (e.g. largemouth bass) and the further dispersal of extant alien species (e.g. pikeperch), as well as habitat interventions that will limit the effects of climate change on their populations. These results also indicate that the combination of climate change and alien invasions could have substantial impacts on—and similar—hotspots of freshwater diversity.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …

Parker, S. D., J. S. Perkin, M. G. Bean, D. Lutz‐Carrillo, and M. R. Acre. 2021. Temporal distribution modelling reveals upstream habitat drying and downstream non‐native introgression are squeezing out an imperiled headwater fish. Diversity and Distributions 27: 533–551. https://doi.org/10.1111/ddi.13214

Aim: To review the conservation status of Headwater catfish Ictalurus lupus (Girard,1859) in the United States, including quantifying environmental correlates with range contraction and hybridization and introgression with Channel catfish Ictalurus punctatus (Rafinesque, 1818) to inform conservatio…