Science Enabled by Specimen Data

Brock, J. M. R., A. M. Bellvé, and B. R. Burns. 2025. Marcescence and prostrate growth in tree ferns are adaptations to cold tolerance. Ecography. https://doi.org/10.1111/ecog.07362

Cold tolerance strategies in plants vary from structural to biochemical permitting many plants to survive and grow on sites that experience freezing conditions intermittently. Although tree ferns occur predominantly across the tropics, they also occur in temperate zones and occasionally in areas that experience sub‐zero temperatures, and how these large ferns survive freezing conditions is unknown. Many temperate tree fern taxa are marcescent – retaining whorls of dead fronds encircling the upper trunk – or develop short or prostrate trunks, possibly to insulate against frost damage to their trunks and growing crowns. We asked the following questions: 1) do global growth patterns and traits of tree ferns respond to freezing conditions associated with latitude and elevation, 2) do growth patterns of tree ferns in New Zealand vary along a temperature‐related gradient, and 3) do marcescent tree fern skirts insulate the growing crown from sub‐zero temperatures? To establish what morphological adaptations permitted the Cyatheales to occur in biomes that experience intermittent sub‐zero temperatures and frost, we 1) reviewed the global distributions of these structural and morphological traits within the tree ferns (Cyatheales); 2) assessed the patterns of tree fern marcescence, and other traits potentially associated with cold tolerance (no trunk, prostrate, short‐trunked) of nine taxa of the Cyatheales along environmental gradients across New Zealand; and 3) conducted a field experiment to assess the thermal insulation properties of tree fern marcescent skirts. We identified significant trends among growth forms, marcescence, and environmental gradients consistent with our hypothesis that these are adaptations to tolerate cold. Our field experiments provide quantitative evidence that marcescent skirts have a strong insulating effect on tree fern trunks. The Cyatheales have evolved several strategies to protect the pith cores of their trunks from extreme cold temperatures in temperate forests allowing them to capture niche space in environments beyond the tropics.

McCulloch-Jones, E. J., B. K. Lemme, L. F. Winzer, D. M. Richardson, and J. R. U. Wilson. 2025. Colocasia esculenta (L.) Schott (Araceae; taro): global invasion history and prognosis for South Africa. South African Journal of Botany 177: 665–673. https://doi.org/10.1016/j.sajb.2024.11.037

Colocasia esculenta (taro), native to tropical Southeast Asia, is an emergent aquatic plant with a wide global distribution. Valued for its agricultural, horticultural, medicinal, and cultural uses, it also has become invasive in some places, spreading unaided along slow-flowing water courses through corm division. Colocasia esculenta was introduced to South Africa at least a century ago (∼ 1918), but widespread invasions are recent, raising concerns that the species could become a harmful invader in the country. This study reviews the history of introduction, invasions, and impacts of C. esculenta around the world; maps its current and potential distribution in South Africa; and, based on a risk analysis, develops recommendations for its management and regulation. Colocasia esculenta has been introduced to at least 180 territories (countries or island states), with records of invasion from 21 of these (9 island and 12 mainland territories). The negative environmental impacts were scored as ‘Moderate’ with the formation of dense mats leading to declines in local native populations; and socioeconomic impacts scored as ‘Minor’ as it has irritant properties if not properly handled and prepared. In South Africa, C. esculenta is found in six provinces but most extensively in the Western Cape and KwaZulu-Natal. Based on a species distribution model, C. esculenta could substantially expand its range in areas where it is already established. Colocasia esculenta was classified as ‘high risk’ for South Africa, with high socio-economic benefits, and as such is identified as a potential conflict generating species. We recommend it is regulated as category 2 (permits are required to carry out any restricted activity) under the South African regulations and suggest exemptions on subsistence farming but prohibitions on all farming in riparian zones. Further investigation is needed for potential management options, including biological control. Recommendations should be reviewed after determining whether some of the subspecific entities present in the country pose a low risk, as then further exemptions or prohibitions might be appropriate.

Garcia, A. L., I. M. S. Bezerra, M. T. Buril, and L. C. Marinho. 2024. First record of the potential bioinvasive species Ipomoea obscura (Convolvulaceae) in South America coast. Journal of Coastal Conservation 29. https://doi.org/10.1007/s11852-024-01088-5

Exotic species are those growing in areas outside their natural distribution and can cause negative impacts on local biodiversity, such as ecological imbalance, competition with native species and changes in ecosystems functioning. Ipomoea obscura (L.) Ker Gawl., native to tropical and subtropical Asia and Africa, and exotic in Australia, Caribbean region and North America, is reported here as the first verified record for South American territory, in the state of Maranhão, Northeast Brazil. This species, known as “Obscure Morning Glory”, has invasive potential and can negatively affect local biodiversity. Recording exotic species in the initial stages of invasion, as well as understanding their biology and taxonomy, is essential for planning strategies to prevent their spread. Here we present a description, comments on phenological period, distribution, taxonomic notes, ecology and uses, as well as photos and illustration.

Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.

Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18

Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.

Akwaji Patrick Ishoro, Onah Dough Owojoku, Ajikah Linus Bashie, Oden Glory Nicholas, Okon Ekeng Ita, Nkang Nkoyo Emem4,, Amaraizu Mary Nneoma, Ugbogu Omokafe Alaba. 2024. Climate change and Pentaclethra macrophylla Benth: Forecasting alterations in native distributional range across West and Central Africa. Zenodo. https://doi.org/10.5281/zenodo.13835195

The tree species known as the African oil bean (Pentaclethra macrophylla Benth) retains numerous applications. For rural residents, almost all of its traded elements represent a significant source of income. Numerous terrestrial habitats have reportedly experienced negative biological, temporal, and spatial effects concerning climate change lately. Understanding the out-turn of changing climate towards the geographic distribution of species could help predict their growth or decline and, if necessary, provide appropriate conservation measures. We examined whether climate change will affect the geographical distribution of this species throughout its native distributional area across West and Central Africa in light of the strong interest that this species holds for rural African residents. Under AfriClim RCP 8.5 scenario 2070 conditions, the inquiry was carried out by applying the MaxEnt model. According to the MaxEnt results, climate change shall hold a major footprint toward species' native spread. About 5% (5889 km2) of the nations across West and Central Africa are predicted to have stable species populations. These are mostly the regions located along the southern coasts of Guinea Bissau, Sierra Leone, Liberia, Cote d'Ivoire, Nigeria, Cameroon, and Gabon. The model threshold indicated a huge 95.29% (119135.9 km2) reduction in the species' appropriate habitat. The southern coasts of Senegal, Ghana, Togo, and the Benin Republic, along with the Democratic Republic of the Congo, are predicted to be unsuitable, as are the topmost northern portions associated with the Sahel regions of West and Central African countries. Additionally, it is expected that the entire Burkina Faso, Central African Republic, Democratic Republic of the Congo, and south-eastern Angola will no longer be appropriate for the species. It is necessary to build up the preservation of the species by raising and establishing it in the anticipated suitable areas/agroforestry plan to ensure its sustainable usage and practicable conservation.

Lin, P.-C., T.-Y. Chiang, M.-L. Chen, T.-W. Hsu, P.-W. Gean, S.-T. Cheng, and Y.-H. Hsu. 2024. Global prospects for cultivating Centella asiatica: An ecological niche modeling approach under current and future climatic scenarios. Journal of Agriculture and Food Research 18: 101380. https://doi.org/10.1016/j.jafr.2024.101380

Centella asiatica is a medicinal plant recognized for its various benefits contributed by its metabolites and has been used as a food supplement since prehistorical times across various cultures. Due to the reliance on natural populations of C. asiatica and the impacts of environmental factors on its yield and centelloside production, there is a need to identify suitable cultivation areas for this species. We employed ecological niche modelling with bioclimatic and soil variables to evaluate the suitability of cultivation under current and future climatic scenarios. Our results identified suitable areas for cultivating C. asiatica worldwide, indicating its potential for global commercial cultivation. However, the niche reconstruction of highly concentrated centelloside was restricted to South and Southeast Asia due to the lack of available data. When we projected the modelled niche of centelloside in these regions, we observed a lower occurrence probability in some areas, suggesting potential challenges in cost-effectiveness. Nevertheless, our results suggest a consistent future distribution for this species when we projected the modelled niche under future climates based on various socio-economic scenarios. This study not only identifies suitable areas to develop commercial cultivation for C. asiatica with highly concentrated centelloside, but also provides supporting evidence of the consistency of these areas, which can increase its sustainability.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Wan, J.-N., S.-W. Wang, A. R. Leitch, I. J. Leitch, J.-B. Jian, Z.-Y. Wu, H.-P. Xin, et al. 2024. The rise of baobab trees in Madagascar. Nature 629: 1091–1099. https://doi.org/10.1038/s41586-024-07447-4

The baobab trees (genus Adansonia ) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna 1 . These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history 2 , 3 . Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri , and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri . We carried out genomic and ecological analyses of all eight extant baobab species, providing insights into their evolutionary history and recommendations for conservation efforts.