Science Enabled by Specimen Data

Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w

Abstract  Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.

Nuñez Otaño, N. B., E. V. Pérez-Pincheira, V. Coll Moritan, and M. Llorens. 2024. Maastrichtian palaeoenvironments and palaeoclimate reconstruction in southern South America (Patagonia, Argentina) based on fossil fungi and algae using open data resources. Historical Biology: 1–15. https://doi.org/10.1080/08912963.2024.2408804

The use of non-pollen palynomorphs (NPP), particularly fossil fungi and algae, as palaeobiological proxies for Late Cretaceous palaeoenvironmental and palaeoclimatic reconstructions of warm-to-hot greenhouse conditions, can enhance our understanding of climate change impacts on modern Patagonian environments. This study aimed to reconstruct the Maastrichtian palaeoenvironment and palaeoclimate in the Cañadón Asfalto Basin (CAB, Chubut Province) by testing these NPPs as proxies using the Nearest Living Relative method (NLR). Moreover, using modern ecological requirements from open-source databases, such as GBIF and processing it with an open-source, cross-platform tool like QGIS, linked with Köppen-Geiger shapefiles, provided evidence of climate-driven palaeo-distribution patterns of fungal and algal diversity at CAB. Applying modern ecological requirements and biogeographic distribution data, we reconstructed the palaeoclimate as temperate with evenly distributed precipitation and warm summers, corresponding to the Cfb climate zone in Köppen-Geiger classifications. Additionally, our methodology produced reliable results regarding Cenozoic floras’ physiognomies based on fossil fungi, revealing a transition from sparsely wooded areas with palms and prairies to complex forest ecosystems with palms, deciduous trees, and shrubland. Furthermore, testing Cretaceous algae with the NLR method, for the first time, provided comprehensive insights into past water body characteristics, including trophic state and water quality.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Howard, C. C., P. Kamau, H. Väre, L. Hannula, A. Juslén, J. Rikkinen, and E. B. Sessa. 2024. Historical Biogeography of Sub‐Saharan African Spleenworts. Journal of Biogeography. https://doi.org/10.1111/jbi.15019

ABSTRACTAimFerns are globally distributed, yet the number of studies examining the historical evolution of African taxa is relatively low. Investigation of the evolution of African fern diversity is critical in order to understand patterns and processes that have global relevance (e.g., the pantropical diversity disparity [PDD] pattern). This study aims to examine when and from where a globally distributed fern lineage arrived in sub‐Saharan Africa, to obtain a better understanding of potential processes contributing to patterns of diversity across the region.LocationGlobal, sub‐Saharan Africa.TaxonAsplenium (Aspleniaceae).MethodsWe analysed five loci from 537 Asplenium taxa using a maximum likelihood (IQ‐Tree) phylogenetic framework. For age estimation, we performed penalised likelihood as implemented in treePL, and executed a Bayesian analysis using BEAST. Biogeographical analyses were carried out using BioGeoBEARS.ResultsMost dispersals into Africa occurred within the last ~55 myr, with the highest diversity of sub‐Saharan African taxa concentrated in two clades, each of which descended from an Asian ancestor. Additional dispersals to sub‐Saharan Africa can be found throughout the phylogeny. Lastly, potential cryptic species diversity exists within Asplenium as evidenced by several polyphyletic taxa.Main ConclusionsWe recover multiple dispersals of Asplenium to sub‐Saharan Africa, with two major lineages likely diversifying after arrival.

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Louw, G. J., L. J. Potgieter, and D. M. Richardson. 2024. Myoporum (Scrophulariaceae): Introduction, naturalization, and invasion of an enigmatic tree genus in South Africa. South African Journal of Botany 168: 529–541. https://doi.org/10.1016/j.sajb.2024.03.022

Myoporum is a genus of trees and shrubs native to the Northern Hemisphere that has been introduced to many parts of the world, mainly for ornamental purposes. We assessed the introduction history, distribution, and extent of naturalization/invasion for Myoporum species in South Africa.Information was collated to determine key events associated with the introduction, establishment, and naturalization of Myoporum in South Africa. Data were collated to determine the current distribution of the genus in South Africa. Twenty sites in the Western Cape were sampled to determine correlates of naturalization. Myoporum was first recorded in South Africa in 1934. Three species were confirmed to be present in South Africa: M. insulare, M. laetum and M. montanum (37 %, 25 % and 24 % of all iNaturalist records respectively). Most records are from the Western Cape (91 %) and small parts of the Eastern Cape; isolated populations occur in Gauteng and the Northern Cape. We could not confirm the presence M. petiolatum, M. tenuifolium or M. tetrandrum. Field surveys revealed widespread naturalization of M. insulare (46 % of all Research Grade observations in iNaturalist); this species was categorized code D1 in the introduction-naturalization-invasion continuum. Myoporum laetum (C3) and M. montanum (C2) are also widely naturalized but over smaller areas. Naturalized populations comprised predominantly juvenile M. insulare plants occurring in highly disturbed (transformed) habitats. Formal risk analyses for all Myoporum species in South Africa are needed as the basis for re-evaluation of their status in national legislation.

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Vanderhoorn, J. M. M., J. M. Wilmshurst, S. J. Richardson, T. R. Etherington, and G. L. W. Perry. 2024. Revealing the palaeoecology of silent taxa: selecting proxy species from associations in modern vegetation data. Journal of Biogeography. https://doi.org/10.1111/jbi.14826

Aim Species severely under‐represented in fossil pollen records leave gaps in interpretations and reconstructions of past vegetation. These ‘silent taxa’ leave little or no trace due to low pollen production, dispersal, preservation and taxonomic resolution. An approach for including them is through associating them with other species with reliable pollen representation. Here, we demonstrate a method for selecting such a proxy species for the Holocene using modern vegetation data.LocationNew Zealand.TaxonBeilschmiedia tawa (A.Cunn.) Benth. & Hook. F. ex Kirk (Lauraceae).MethodsWe used vegetation plot data to perform a pairwise co‐occurrence analysis of the New Zealand indigenous forest metacommunity to identify species with a strong positive association with Beilschmiedia tawa (tawa), a common tree severely under‐recorded in the pollen record. For those species, we then modelled their realised climatic niches to identify species with high niche overlap. We discuss how well those species could be interpreted from the Holocene fossil pollen record based on the representation of their pollen taxa.ResultsKnightia excelsa (rewarewa; Proteaceae) is a potential proxy for B. tawa in Holocene fossil pollen records, and other, range‐limited species may provide community‐specific proxies. We show combining resampling with sub‐sampling is a robust method for reducing the high false positive rate associated with large co‐occurrence analyses (1000+ sites) by limiting the sample size to 100 sites.Main ConclusionsWe show that the palaeoecology of silent taxa can be studied via proxy species, allowing their past distributions to be better understood. We highlight the importance of modelling many aspects of the realised niche to understand the usefulness and limitations of the silent–proxy association. Future research should focus on testing the underlying assumptions of the silent–proxy relationship so that models built on modern data can confidently be applied to palaeoecological data.

Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755

AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.