Science Enabled by Specimen Data

Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany. https://doi.org/10.1002/ajb2.16059

(no abstract available)

Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677

Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.

Couvreur, T. L. P., X. Cornejo, J. N. Zapata, and A. Loor. 2022. Two new magnoliid (Annonaceae, Lauraceae) tree species from Manabí, western Ecuador. Blumea - Biodiversity, Evolution and Biogeography of Plants. https://doi.org/10.3767/blumea.2022.67.02.02

Western Ecuador harbours high plant diversity and endemism. The region of Manabí has known intense deforestation over the last decades, but lowland rain forests persist in a network of small forest fragment patches. Here, we describe two new magnoliid tree species from a small privately owned forest fragment known as La Esperanza reserve, in the El Carmen canton (Manabí): Aniba ecuadorica (Lauraceae) and Guatteria esperanzae (Annonaceae). For both species a detailed morphological description, a preliminary conservation status following IUCN criteria, distribution maps and high quality photographs are provided. This represents the second species of Aniba known to occur in western Ecuador, while there are 14 species of Guatteria documented for Ecuador west of the Andes. Aniba ecuadorica is only known from two localities and has a preliminary IUCN conservation status of Critically Endangered, while Guatteria esperanzae is known from six localities and is suggested to be Endangered. Finally, we provide a quick overview of Guatteria species in western Ecuador with a key to the species in the region. The description of these two new tree species underlines the important need of prospection and conservation of the remnant forests in the Manabí region of western Ecuador. We also stress the importance of privately owned forest fragments for biodiversity conservation.

Pérez, G., M. Vilà, and B. Gallardo. 2022. Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosystem Services 56: 101459. https://doi.org/10.1016/j.ecoser.2022.101459

Invasive alien species (IAS) are one of the main threats to biodiversity conservation, with significant socio-economic and ecological impacts as they disrupt ecosystem services and compromise human well-being. Global change may exacerbate the impacts of IAS, since rising temperatures and human activities favour their introduction and range expansion. Therefore, anticipating the impacts of biological invasions is crucial to support decision-making for their management. In this work, the potential impacts of four invasive alien plant species: Ailanthus altissima, Baccharis halimifolia, Impatiens glandulifera and Pueraria montana, on the provision of three ecosystem services in Europe were evaluated under current and future climate change scenarios. Using a risk analysis protocol, we determined that the most affected services are food provisioning, soil erosion regulation and the maintenance of biological diversity. To evaluate future impacts, species distribution models were calibrated using bioclimatic, environmental and human impact variables. We found that most of continental Europe is suitable for the establishment of A. altissima, B. halimifolia and I. glandulifera, while the potential distribution of P. montana is more limited. Models anticipate a shift in the distribution range for the species towards the north and east of Europe under future scenarios. Bivariate analysis allowed the identification of trends for future impacts in ecosystem services by simultaneously visualising the potential distribution of invasive species and the provision of ecosystem services. Our models project an increase in critical and high impact areas on the analysed ecosystem services, with Western Europe and the British Isles as the most affected regions. In comparison, lower impacts are projected for the Mediterranean region, likely as a consequence of the northwards expansion of invaders. Measures need to be taken to mitigate the expansion and impact of invasive species as our work shows that it can jeopardise the provision of three key services in Europe.

Salgado-Negret, B., N. Urbina-Cardona, E. A. Noguera-Urbano, C. A. Cruz-Rodríguez, and M. P. Baptiste. 2022. Predicting the Risk of Exotic Plant Invasions in the Orinoco Region: Importance of Distribution Models, Climatic Niche and Functional Richness. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.687723

The process of biological invasions resulting from the introduction of exotic species is one of the most critical components of global environmental change. Although many hypotheses try to explain the processes underlying biological invasions, changes in land use are essential drivers mediating the colonization of exotic species at the landscape level. We used potential species distribution models developed in Maxent and a database of nine functional traits associated with invasion success for 18 exotic species with a high risk of establishment and difficulty of control in the Orinoco region from Colombia. We found that 67% of the species differed from the centroid in the climatic niche when comparing native and invaded localities. Overall, the native distribution localities showed a more restricted dispersal in their climatic niche, and for most species, native distribution was found within the broad environmental gradients of the invaded localities. Additionally, we found high climatic suitability for all exotic species across all the biomes and ecosystems; however, transformed ecosystems showed exotic plant species’ higher potential functional richness. Our research allowed us to identify key geographical areas that are highly susceptible to invasions and prioritize species that need control in particular ecosystems and biomes. This work provides early warnings on the potential risks of invasion of exotic species, and it will improve the monitoring and management efforts in the Orinoco region of Colombia.

Silva, J. O. da, F. Galvão, A. C. da Silva, and P. Higuchi. 2022. TREE SPECIES OF ATLANTIC FOREST AND PAMPA ALLUVIAL FORESTS IN THE CONTEXT OF CLIMATE CHANGE. Revista Árvore 46. https://doi.org/10.1590/1806-908820220000013

Although species are continually exposed to variations in climate over time, there is growing concern about the accelerated pace of climate change to which they are currently exposed, as climate is determinant in the geographic distribution of animals and plants. This study evaluated the climatic niche and impact of climate change in the 2061-2080 period on areas of occurrence of indicator tree species of alluvial forests in the south-central portion of the Atlantic Forest and Brazilian Pampa. Nineteen climatic variables were considered for the contemporary and future climates. The species’ climatic niches were modeled using the Maxent algorithm. Climatic adequacy for species in the Parana-Uruguay group was strongly influenced by variables related to temperature, while adequacy for species in the Atlantic group was related to rainfall and temperature. A decrease in the area of climatic adequacy is estimated for most species considered, with similar behavior in the two groups assessed. The species tend to occupy a more southern position, using areas of higher altitude, latitude and proximity to the Brazilian coast as climate refuges, highlighting these areas as strategic for environmental conservation.

Zhao, J., X. Yu, W. J. Kress, Y. Wang, Y. Xia, and Q. Li. 2022. Historical biogeography of the gingers and its implications for shifts in tropical rain forest habitats. Journal of Biogeography 49: 1339–1351. https://doi.org/10.1111/jbi.14386

Aim The relationships between biome shifts and global environmental changes in temperate zone habitats have been extensively explored; yet, the historical dynamics of taxa found in the tropical rain forest (TRF) remain poorly known. This study aims to reconstruct the relationships between tropical rain forest shifts and global environmental changes through the patterns of historical biogeography of a pantropical family of monocots, the Zingiberaceae. Location Global. Taxon Zingiberaceae. Methods We sampled DNA sequences (nrITS, trnK, trnL-trnF and psbA-trnH) from GenBank for 77% of the genera, including 30% of species, in the Zingiberaceae. Global fossil records of the Zingiberaceae were collected from literatures. Rates of speciation, extinction and diversification were estimated based on phylogenetic data and fossil records through methods implemented in BAMM. Ancestral ranges were estimated using single-tree BioGeoBEARS and multiple-trees BioGeoBEARS in RASP. Dispersal rate through time and dispersal rate among regions were calculated in R based on the result of ancestral estimation. Results The common ancestor of the Zingiberaceae likely originated in northern Africa during the mid-Cretaceous, with later dispersal to the Asian tropics. Indo-Burma, rather than Malesia, was likely a provenance of the common ancestor of Alpinioideae–Zingiberoideae. Several abrupt shifts of evolutionary rates from the Palaeocene were synchronized with sudden global environmental changes. Main conclusions Integrating phylogenetic patterns with fossil records suggests that the Zingiberaceae dispersed to Asia through drift of the Indian Plate from Africa in the late Palaeocene. Formation of island chains, land corridors and warming temperatures facilitated the emigration of the Zingiberaceae to a broad distribution across the tropics. Moreover, dramatic fluctuations of the speciation rate of Zingiberoideae appear to have been synchronized with global climate fluctuations. In general, the evolutionary history of the Zingiberaceae broadens our understanding of the association between TRF shifts in distribution and past global environmental changes, especially the origin of TRF in Southeast Asia.

Gori, B., T. Ulian, H. Y. Bernal, and M. Diazgranados. 2022. Understanding the diversity and biogeography of Colombian edible plants. Scientific Reports 12. https://doi.org/10.1038/s41598-022-11600-2

Despite being the second most biodiverse country in the world, hosting more than 7000 useful species, Colombia is characterized by widespread poverty and food insecurity. Following the growing attention in Neglected and Underutilized Species, the present study will combine spatial and taxonomic analysis to unveil their diversity and distribution, as well as to advocate their potential as key resources for tackling food security in the country. The cataloguing of Colombian edible plants resulted in 3805 species. Among these, the most species-rich genera included Inga, Passiflora, Miconia, Solanum, Pouteria , Protium , Annona and Bactris . Biogeographic analysis revealed major diversity hotspots in the Andean humid forests by number of records, species, families, and genera. The departments of Antioquia, Boyacá, Meta, and Cundinamarca ranked first both in terms of number of unique georeferenced records and species of edible plants. Significant information gaps about species distribution were detected in the departments of Cesar, Sucre, Atlántico, Vichada, and Guainía, corresponding to the Caribe and Llanos bioregions, indicating the urgent need for focusing investigation in these areas. Furthermore, a significant level of geographic specificity was found in edible plant species’ distributions between 13 different bioregions and 33 departments, hinting the adoption of tailorized prioritisation protocols for the conservation and revitalization of such resources at the local level.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499. https://doi.org/10.1038/s41477-022-01144-8

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Cano, Á., F. W. Stauffer, T. Andermann, I. M. Liberal, A. Zizka, C. D. Bacon, H. Lorenzi, et al. 2022. Recent and local diversification of Central American understorey palms. Global Ecology and Biogeography 31: 1513–1525. https://doi.org/10.1111/geb.13521

Aim Central America is largely covered by hyperdiverse, yet poorly understood, rain forests. Understorey palms are diverse components of these forests, but little is known about their historical assembly. It is not clear when palms in Central America reached present diversity levels and whether most species arrived from neighbouring regions or evolved locally. We addressed these questions using the most species-rich American palm clades indicative of rain forests. We reconstructed and compared their phylogenomic and biogeographical history with the diversification of 54 other plant lineages, to gain a better understanding of the processes that shaped the assembly of Central American rain forests. Location Central America. Time period Cretaceous to present. Major taxa studied Arecaceae: Arecoideae: Bactridinae, Chamaedoreeae, Geonomateae. Methods We sampled 218 species through fieldwork and living collections. We sequenced their genomic DNA using target sequence-capture procedures. Using 12 calibration points, we reconstructed dated phylogenies under three approaches (multispecies coalescent, maximum likelihood and Bayesian inference), conducted biogeographical analyses (dispersal–extinction–cladogenesis) and estimated phylogenetic diversity metrics. Results Dated phylogenies revealed intense diversification in Central America from 12 Ma. Local diversification events were four times more frequent than dispersal events, and we found strong phylogenetic clustering in relationship to Central America. Main conclusions Our results suggest that most understorey palm species that characterize the Central American rain forests today evolved locally after repeated dispersal events, mostly from South America. Understorey palms in Central American rain forests diversified primarily after closure of the Central American Seaway at c. 13 Ma, suggesting that the Great American Biotic Interchange was a major trigger for plant diversification in Central American rain forests. This recent diversification contrasts with the much earlier existence of rain forest palms in neighbouring South America since c. 58 Ma. We found similar timings of diversification in 54 other seed plant lineages, suggesting an unexpectedly recent assembly of the hyperdiverse Central American flora.