Science Enabled by Specimen Data

Gillespie, L. J., P. C. Sokoloff, G. A. Levin, J. Doubt, and R. T. McMullin. 2024. Vascular plant, bryophyte, and lichen biodiversity of Agguttinni Territorial Park, Baffin Island, Nunavut, Canada: an annotated species checklist of a new Arctic protected area. Check List 20: 279–443.

Agguttinni Territorial Park is a large, newly established park on the east-central coast of Baffin Island in Nunavut, Canada. Previous knowledge of the plant and lichen biodiversity was limited and based mostly on collections made during the 1950 Baffin Island Expedition. We conducted a floristic inventory of the park in 2021 and re-examined previous collections. We recorded 141 species of vascular plants belonging to 25 families, 69 species of bryophytes in 27 families, and 93 species of lichens in 23 families. Most of the vascular plant and bryophyte species are new records for the park area, and some vascular plants, bryophytes, and lichens are newly reported for Baffin Island, Nunavut, or the Canadian Arctic or represent significant range extensions. Vascular plant species diversity varied greatly among localities, with inland valleys at the heads of fiords showing highest diversity and interior rocky barrens showing the lowest.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications.

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069.

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Andersen, J. C., and J. S. Elkinton. 2023. Climate suitability analyses compare the distributions of invasive knotweeds in Europe and North America with the source localities of their introduced biological control agents. Ecology and Evolution 13.

Climate suitability analyses based on ecological niche modeling provide a powerful tool for biological control practitioners to assess the likelihood of establishment of different candidate agents prior to their introduction in the field. These same analyses could also be performed to understand why some agents establish more easily than others. The release of three strains of Aphalara itadori (Shinji) (Hemiptera: Pysllidae), each from a different source locality in Japan, for the biological control of invasive knotweed species, Reynoutria spp. Houtt. (Caryophyllales: Polygonaceae), provides an important opportunity to compare the utility of climate suitability analyses for identifying potential climate‐based limitations for successful biological control introductions. Here, we predict climate suitability envelopes for three target species of knotweed in Europe and two target species of knotweed in North America and compare these suitability estimates for each of these species to the source localities of each A. itadori strain. We find that source locality of one strain, the Kyushu strain, has little‐to‐no suitability compared to other locations in Japan based on knotweed records from Europe, supporting an earlier study based on North American Japanese knotweed records. The source locality of a second strain, the Murakami strain, was predicted to have medium‐to‐high suitability based on records of knotweeds from North America. In contrast, European records of Reynoutria × bohemica Chrtek & Chrtková and Reynoutria sachalinensis (F. Schmidt) Nakai predicted no suitability for this locality compared to other locations in Japan, while European records for Reynoutria japonica Houtt. predicted low suitability. The source locality of the final strain, the Hokkaido strain, was predicted as having medium‐to‐high suitability based on knotweed records of all examined species from both North America and Europe.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution.

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24.

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .

Wang, Y., J. Wang, T. A. Garran, H. Liu, H. Lin, J. Luo, Q. Yuan, et al. 2023. Genetic diversity and population divergence of Leonurus japonicus and its distribution dynamic changes from the last interglacial to the present in China. BMC Plant Biology 23.

Background Leonurus japonicus , a significant medicinal plant known for its therapeutic effects on gynecological and cardiovascular diseases, has genetic diversity that forms the basis for germplasm preservation and utilization in medicine. Despite its economic value, limited research has focused on its genetic diversity and divergence. Results The avg. nucleotide diversity of 59 accessions from China were 0.00029 and hotspot regions in petN-psbM and rpl32-trnL (UAG) spacers, which can be used for genotype discrimination. These accessions divided into four clades with significant divergence. The four subclades, which split at approximately 7.36 Ma, were likely influenced by the Hengduan Mountains uplift and global temperature drop. The initial divergence gave rise to Clade D, with a crown age estimated at 4.27 Ma, followed by Clade C, with a crown age estimated at 3.39 Ma. The four clades were not showed a clear spatial distribution. Suitable climatic conditions for the species were identified, including warmest quarter precipitation 433.20 mm ~ 1,524.07 mm, driest month precipitation > 12.06 mm, and coldest month min temp > -4.34 °C. The high suitability distribution showed contraction in LIG to LGM, followed by expansion from LGM to present. The Hengduan Mountains acted as a glacial refuge for the species during climate changes. Conclusions Our findings reflected a clear phylogenetic relationships and divergence within species L. japonicus and the identified hotspot regions could facilitate the genotype discrimination. The divergence time estimation and suitable area simulation revealed evolution dynamics of this species and may propose conservation suggestions and exploitation approaches in the future.

Percy, D., and Q. Cronk. 2023. Report of two distinct ribotypes in ITS sequences of Phalaris arundinacea (Poaceae) in western Canada and Alaska. Biodiversity Data Journal 11.

AbstractBackgroundPhalarisarundinacea L. (reed canary grass) is a widely occurring grass throughout the Northern Hemisphere. In North America, it is thought to consist of introduced agricultural forms from Europe as well as native populations.New informationDuring a survey of Phalarisarundinacea in western Canada, we discovered two distinct ribotypes in the sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA: one full length (ITS-long) and one with a seven base pair deletion (ITS-short). In addition, ITS-long plants have fixed heterozygosity indicating possible polyploidy. Phylogenetic analysis reveals that ITS-short is a unique ribotype that characterises an intraspecific clade. We designed an efficient PCR-based assay that allows sizing of a 238/245 base pair fragment in a capillary sequencer. This approach provides a novel marker that could be useful in future surveys of Phalarisarundinacea.

Sáenz-Ceja, J. E., and M. E. Mendoza. 2023. Priority areas for the conservation of the genus Abies Mill. (Pinaceae) in North America. Journal for Nature Conservation: 126407.

Fir forests (Abies, Pinaceae) are dominant in temperate regions of North America; however, they have experienced high degradation rates that can threaten their long-term continuity. This study aimed to identify the priority areas for the conservation of the genus Abies in North America. First, we modeled the species distribution of the 17 native species through ecological niche modeling, considering 21 environmental variables. Then, we defined the priority areas through multi-criteria analysis, considering the species richness, geographic rareness, irreplaceability, habitat degradation, and risk extinction. We also built six scenarios, giving more priority to each criterion. Finally, we identified the proportion of the extent of the priority areas covered by protected areas. Elevation, precipitation seasonality, and winter precipitation influenced the distribution of most of the Abies species. When considering equal weights to each criterion, the priority areas summed up 6% of the total extent covered by the Abies species in North America. Most priority areas were located on the West Coast of the United States, the Eastern Sierra Madre, Southern Sierra Madre, Sierras of Chiapas and Central America, and the Trans-Mexican Volcanic Belt ecoregions. In these ecoregions, the Abies species are restricted to small areas facing high degradation levels. Only 16% of the area covered by the Abies species in North America is protected, mainly under restrictive schemes such as National Parks and Wilderness Areas. The priority areas identified could be the basis for establishing or enlarging protected areas. The preservation of the genus Abies could also maintain other ecological features and processes such as biodiversity, forest resources, and environmental services.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.