Science Enabled by Specimen Data

Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379

We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.

Owen, E., M. Zuliani, M. Goldgisser, and C. Lortie. 2024. The importance of native shrubs on the distribution and diversity of reptiles and amphibians in the central drylands of Southwestern USA. Biodiversity and Conservation 33: 2131–2151. https://doi.org/10.1007/s10531-024-02851-8

Conservation and management of drylands is a global challenge. Key attributes of these ecosystems, such as dominant vegetation including shrubs, can provide a crucial mechanism to inform conservation strategies. The shrub species Ephedra californica and Larrea tridentata are common native shrub species within the deserts of California and frequently benefit other plant and animal species. Here, we tested the hypothesis that shrubs support reptile and amphibian communities through relative increases in available habitat, estimated through increasing shrub densities at the site level. Reported occurrence data from the Global Biodiversity Information Facility (GBIF) and high-resolution satellite images were used to test for local-to-regional patterns in reptile and amphibian distribution and diversity by shrub densities at sites. At 43 distinct sites, the relationship between shrub density and reported reptile and amphibian communities was also tested. A total of 71 reptile and amphibian species were reported regionally. Increases in shrub density across sites positively influenced the relative abundance and richness of reptiles and amphibians observed. Moreover, increasing shrub density also had a positive influence on species evenness. Aridity differences between sites did not significantly influence the relationship between shrub density and reptiles and amphibians suggesting that the relationship was robust. This study highlights the importance of foundational shrub species in supporting reptile and amphibian communities in arid and semi-arid regions. Large-scale patterns of biodiversity in deserts can be supported by positive plant-animal interactions including small islands of fertility and resources for animals in the context of a warming climate.

Belotti López de Medina, C. R. 2024. Diet breadth and biodiversity in the pre-hispanic South-Central Andes (Western South America) during the Holocene: An exploratory analysis and review. The Holocene. https://doi.org/10.1177/09596836241231446

This paper presents an exploratory study on the taxonomic diversity of pre-Hispanic archaeofaunas in the South-Central Andes (SCA; western South America) from the Pleistocene-Holocene boundary to the Late-Holocene. The SCA is a complex of diverse environments and has undergone distinct climate events for the last 13,000 years, such as the occurrence of warmer and drier conditions in the Middle-Holocene. The South-Central Andean area was part of the larger Andes interaction area, which was a primary center for animal and plant domestication and the emergence of agro-pastoralist economies. Since subsistence was key to these processes, the SCA provides a relevant case study on the interactions among environment, foodways and sociocultural evolution. Taxonomic diversity was used here as a proxy for diet breadth. A total of 268 archaeofaunal assemblages were sampled from the zooarchaeological literature. Reviewed variables included the cultural chronology and spatial coordinates of the assemblages, as well as the presence and abundance of taxa at the family rank. Taxonomic diversity covered two dimensions: composition (families present in each assemblage) and structure (quantitative relationships among taxa), which was measured through richness (NTAXA), ubiquity and relative abundance (NISP based rank-order). Despite the uneven distribution of samples, the analyses revealed the following trends: (1) a moderate relationship between NTAXA and distance from coastline for most of the Holocene; (2) a potential decrease in assemblage richness for coastal ecoregions during the Late-Holocene; and (3) a generalized increase in the relative abundance of Camelidae.

DuBose, T. P., V. Catalan, C. E. Moore, V. R. Farallo, A. L. Benson, J. L. Dade, W. A. Hopkins, and M. C. Mims. 2024. Thermal Traits of Anurans Database for the Southeastern United States (TRAD): A Database of Thermal Trait Values for 40 Anuran Species. Ichthyology & Herpetology 112. https://doi.org/10.1643/h2022102

Thermal traits, or how an animal responds to changing temperatures, impacts species persistence and thus biodiversity. Trait databases, as repositories of consolidated, measured organismal attributes, allow researchers to link study species with specific trait values, enabling comparisons within and among species. Trait databases also help lay the groundwork to build mechanistic linkages between organisms and the environment. However, missing or hidden physiological trait data preclude building mechanistic estimates of climate change vulnerability for many species. Thus, physiologically focused trait databases present an opportunity to consolidate data and enable species-specific or multispecies, mechanistic evaluations of climate change vulnerability. Here, we present TRAD: thermal traits of anurans database for the southeastern United States, a database of thermal trait values related to physiological thermoregulation (critical thermal minima and maxima, preferred temperature), behavioral thermoregulation (activity period, retreat emergence temperature, basking temperature, minimum and maximum foraging temperatures), and body mass for 37 anuran species found within the southeastern United States. In total, TRAD contains 858 reported trait values for 37 of 40 species found in the region from 267 peer-reviewed papers, dissertations, or theses and is easily linked with trait data available in ATraiU, an ecological trait database for anurans in the United States. TRAD contains trait values for multiple life stages and a summarization of interspecific adult trait values. Availability of trait data varied widely among traits and species. Estimates of mass were the most common trait values reported, with values available for 32 species. Behavioral trait values comprised 23% of our database, with activity period available for 34 species. We found the most trait values for Cope's Gray Treefrog (Dryophytes chrysoscelis), with at least one trait value for eight traits in the database. Conversely, species in the genus Pseudacris generally had the fewest trait values available. Species with the largest geographic range sizes also had the greatest coverage of data across traits (rho 5 0.75, P , 0.001). TRAD can aid studies of anuran response to changing temperatures, physiological niche space and limitations, and potential drivers of anuran geographic range limits, influencing our understanding of other ecological and evolutionary patterns and processes and enabling multispecies comparisons of potential risk and resilience in the face of climate change.

Montana, K. O., V. Ramírez-Castañeda, and R. D. Tarvin. 2023. Are Pacific Chorus Frogs (Pseudacris regilla) Resistant to Tetrodotoxin (TTX)? Characterizing Potential TTX Exposure and Resistance in an Ecological Associate of Pacific Newts (Taricha). Journal of Herpetology 57. https://doi.org/10.1670/22-002

Animals that frequently encounter toxins often develop mechanisms of toxin resistance over evolutionary time. Both predators that consume toxic prey and organisms in physical contact with a toxin in their environment may experience natural selection for resistance. Based on observations that Pacific Chorus Frogs (Pseudacris regilla) sometimes eat and mistakenly amplect tetrodotoxin (TTX)-defended Taricha newts, we predicted that P. regilla may possess TTX resistance. We compared amino acid sequences of domain IV of the muscle voltage-gated sodium channel gene SCN4A (NaV1.4) in populations of P. regilla that are sympatric and allopatric with Taricha. We identified a single substitution in NaV1.4 of P. regilla at a conserved site in the pore loop where TTX binds. Although the role of this site in TTX resistance has not been functionally assessed, both allopatric and sympatric P. regilla had this substitution, along with several other reptiles and amphibians, suggesting that it may be unrelated to TTX exposure from Taricha. Thus, there is no conclusive evidence that P. regilla possesses TTX resistance encoded by amino acid substitutions in this domain. California occurrence data from the last 50 yr indicate that Taricha activity peaks in January while the activity of P. regilla peaks in April, with times where the species may come into contact. However, P. regilla may not be exposed to levels of TTX from Taricha high enough to select for mutations in NaV1.4. Other unidentified mechanisms of TTX resistance could be present in P. regilla and other species sympatric with toxic newts.

Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19. https://doi.org/10.1080/0035919x.2023.2200742

South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.

Hedrick, B. P., A. Estrada, C. Sutherland, and A. M. Barbosa. 2023. Projected northward shifts in eastern red‐backed salamanders due to changing climate. Ecology and Evolution 13. https://doi.org/10.1002/ece3.9999

Many species' distributions are being impacted by the acceleration of climate change. Amphibians in particular serve numerous ecosystem functions and are useful indicators of environmental change. Understanding how their distributions have been impacted by climate change and will continue to be impacted is thus important to overall ecosystem health. Plethodon cinereus (Eastern Red‐Backed Salamander) is a widespread species of lungless salamander (Plethodontidae) that ranges across northeastern North America. To better understand future potential lungless salamander range shifts, we quantify environmental favorability, the likelihood of membership in a set of sites where environmental conditions are favorable for a species, for P. cinereus in multiple time periods, and examine shifts in the species' distribution. First, utilizing a large data set of georeferenced records, we assessed which bioclimatic variables were associated with environmental favorability in P. cinereus. We then used species distribution modeling for two time periods (1961–1980 and 2001–2020) to determine whether there was a regional shift in environmental favorability in the past 60 years. Models were then used to project future distributions under eight climate change scenarios to quantify potential range shifts. Shifts were assessed using fuzzy logic, avoiding thresholds that oversimplify model predictions into artificial binary outputs. We found that P. cinereus presence is strongly associated with environmental stability. There has been a substantial northward shift in environmental favorability for P. cinereus between 1961–1980 and 2001–2020. This shift is predicted to continue by 2070, with larger shifts under higher greenhouse gas emission scenarios. As climate change accelerates, it is differentially impacting species but has especially strong impacts on dispersal‐limited species. Our results show substantial northward shifts in climatic favorability in the last 60 years for P. cinereus, which are likely to be exacerbated by ongoing climate change. Since P. cinereus is dispersal‐limited, these models may imply local extirpations along the southern modern range with limited northward dispersal. Continued monitoring of amphibians in the field will reveal microclimatic effects associated with climate change and the accuracy of the model predictions presented here.

Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100

Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Radomski, T., S. R. Kuchta, and K. H. Kozak. 2022. Post‐Pleistocene dispersal explains the Rapoport effect in North American salamanders. Journal of Biogeography 49: 1048–1060. https://doi.org/10.1111/jbi.14361

Aims In many taxa, the latitudinal span of species' geographic ranges are positively correlated with median latitude (the Rapoport effect). This correlation is frequently explained as adaptation to contemporary climate; however, variability in post-glacial range expansion among species could also explain this observation. We analyse geographic data for North American salamanders to test the potential causes of Rapoport effects. Location Temperate North America. Taxon Salamanders (order Caudata). Methods We tested for a Rapoport effect by estimating correlations between the latitudinal midpoint and latitudinal range among species. Next, we manipulated species' latitudinal ranges by removing post-glacial habitat and assessing the impact of species demonstrating post-glacial range expansion in forming a Rapoport effect. We built ecological niche models for species found south of the Wisconsin Ice Sheet during the Last Glacial Maximum and transferred these models to post-glacial areas. If dispersal is important in forming a Rapoport effect, then some species may tolerate northern climates but have not expanded northward as a result of variation in geographic access to post-glacial habitats. We created binary ecological niche models by thresholding using the equal sensitivity and specificity value. Results We recovered a Rapoport effect that was robust to the null models we tested. Analyses that manipulated ranges and species pools supported a role for variation in post-glacial range expansion among species, especially for eastern North America. Results from transferring ecological niche models indicated that species have suitable habitat north of their range limit. Main conclusions Variation in post-glacial range expansion is important in shaping geographic range size clines among species in areas where climates changed rapidly, though we also found support for the climatic variability hypothesis. Post-glacial colonization and range expansion likely plays an important role in forming latitudinal biodiversity gradients in northern taxa. While ecophysiology and biotic interactions have been emphasized as important contributors to diversity gradients, our study indicates that post-glacial colonization also plays a key role in forming latitudinal gradients.