Science Enabled by Specimen Data

Barrett, C. F., C. W. Corbett, and H. L. Thixton-Nolan. 2023. A lack of population structure characterizes the invasive Lonicera japonica in West Virginia and across eastern North America1,2. The Journal of the Torrey Botanical Society 150.

Invasive plant species cause massive ecosystem damage globally yet represent powerful case studies in population genetics and rapid adaptation to new habitats. The availability of digitized herbarium collections data, and the ubiquity of invasive species across the landscape make them highly accessible for studies of invasion history and population dynamics associated with their introduction, establishment, spread, and ecological interactions. Here we focus on Lonicera japonica, one of the most damaging invasive vine species in North America. We leveraged digitized collections data and contemporary field collections to reconstruct the invasion history and characterize patterns of genomic variation in the eastern USA, using a straightforward method for generating nucleotide polymorphism data and a recently published, chromosome-level genome for the species. We found an overall lack of population structure among sites in northern West Virginia, USA, as well as across sites in the central and eastern USA. Heterozygosity and population differentiation were both low based on FST analysis of molecular variance, principal components analysis, and cluster-based analyses. We also found evidence of high inbreeding coefficients and significant linkage disequilibrium, in line with the ability of this otherwise outcrossing, perennial species to propagate vegetatively. Our findings corroborate earlier studies based on allozyme data, and suggest that intentional, human-assisted spread explains the lack of population structure, as this species was planted for erosion control and as an ornamental, escaping cultivation repeatedly across the USA.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069.

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189.

Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.

Borges, C. E., R. Von dos Santos Veloso, C. A. da Conceição, D. S. Mendes, N. Y. Ramirez-Cabral, F. Shabani, M. Shafapourtehrany, et al. 2023. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Scientific Reports 13.

Brassica napus , a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040–2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus , with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus , impacting regions such as Canada, China, Brazil, and the United States.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution.

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.


As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld.

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.

Richard-Bollans, A., C. Aitken, A. Antonelli, C. Bitencourt, D. Goyder, E. Lucas, I. Ondo, et al. 2023. Machine learning enhances prediction of plants as potential sources of antimalarials. Frontiers in Plant Science 14.

Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families – Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) – and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms – Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks – and compare these to two ethnobotanical selection approaches – based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best – attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Glison, N., D. Romero, V. Rosso, J. C. Guerrero, and P. R. Speranza. 2023. Understanding the Geographic Patterns of Closely-Related Species of Paspalum (Poaceae) Using Distribution Modelling and Seed Germination Traits. Plants 12: 1342.

The sexual species of the Dilatata complex (Paspalum dasypleurum, P. flavescens, P. plurinerve, P. vacarianum, and P. urvillei) are closely related phylogenetically and show allopatric distributions, except P. urvillei. These species show microhabitat similarities and differences in germination traits. We integrated species distribution models (SDMs) and seed germination assays to determine whether germination divergences explain their biogeographic pattern. We trained SDMs in South America using species’ presence–absence data and environmental variables. Additionally, populations sampled from highly favourable areas in the SDMs of these species were grown together, and their seeds germinated at different temperatures and dormancy-breaking conditions. Differences among species in seed dormancy and germination niche breadth were tested, and linear regressions between seed dormancy and climatic variables were explored. SDMs correctly classified both the observed presences and absences. Spatial factors and anthropogenic activities were the main factors explaining these distributions. Both SDMs and germination analyses confirmed that the niche of P. urvillei was broader than the other species which showed restricted distributions, narrower germination niches, and high correlations between seed dormancy and precipitation regimes. Both approaches provided evidence about the generalist-specialist status of each species. Divergences in seed dormancy between the specialist species could explain these allopatric distributions.