Science Enabled by Specimen Data
OLARIAGA, I., R. MÁRQUEZ-SANZ, S. P. GORJÓN, J. C. ZAMORA, and I. SALCEDO. 2024. Hymenochaete ametzii sp. nov. (Hymenochaetales, Basidiomycota), an endangered bark-dwelling species inhabiting old Quercus pyrenaica trees from the Iberian Peninsula. Phytotaxa 669: 194–210. https://doi.org/10.11646/phytotaxa.669.3.2
Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria. Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria.
Beca-Carretero, P., S. Varela, T. Rossiter, R. Wilkes, M. Julia-Miralles, and D. B. Stengel. 2024. An integrated mapping approach highlights extended distribution and high environmental status of Irish seagrass meadows. Marine Pollution Bulletin 209: 117082. https://doi.org/10.1016/j.marpolbul.2024.117082
To address the remaining knowledge gap regarding the distribution of seagrasses in Ireland, this study aimed a) to create an updated seagrass (Zostera spp.) distribution map, and b) to evaluate the environmental quality to which seagrass meadows are exposed. To achieve the first objective, we (i) combined the available data on seagrass distribution published to date, and (ii) mapped additional meadows by implementing an integrated method based on species distribution models, satellite-derived images, and snorkelling-based surveys. We mapped 209 new seagrass meadows (14.98 km2), representing a 37.03 % increase over previously reported extents. Consequently, the total extent of Irish seagrass meadows is estimated to be at least 54.85 km2. To address the second objective, we assessed the level of anthropogenic pressure of seagrass meadows based on the index provided by the Water Framework Directive of the European Environment Agency. This study demonstrates that Irish meadows are primarily located in areas with ‘HIGH’ and ‘GOOD’ water status.
Ramos-Muñoz, M., M. C. Castellanos, M. Blanco-Sánchez, B. Pías, J. A. Ramírez-Valiente, R. Benavides, A. Escudero, and S. Matesanz. 2024. Drivers of phenotypic variation and plasticity to drought in populations of a Mediterranean shrub along an environmental gradient. Environmental and Experimental Botany 228: 106011. https://doi.org/10.1016/j.envexpbot.2024.106011
Assessing the factors driving intraspecific phenotypic variation is crucial to understand the evolutionary trajectories of plant populations and predict their vulnerability to climate change. Environmental gradients often lead to phenotypic divergence in functional traits and their plasticity across populations. We studied the entire environmental range of the Mediterranean gypsum endemic shrub Helianthemum squamatum to evaluate the factors underlying quantitative population differentiation and phenotypic plasticity to drought, using a common garden with 16 populations that covered the main geographic and the entire climatic range of the species. Sampling followed a hierarchical approach to assess trait genetic variation within and among four distinct geographical regions. We found high but similar plastic responses across populations, which were consistent with adaptive plasticity to drought, including advanced phenology, more sclerophyllous leaves, higher water use efficiency and larger seeds in dry conditions. Despite these generally similar plastic responses, we found significant population differentiation in quantitative traits, part of which was structured at the regional scale. Such differentiation was not associated with environmental variation, including differences in climate and soil conditions. This suggests that non-adaptive processes might have had a role on genetic differentiation in H. squamatum, likely due to the island-like configuration of gypsum habitats and the lack of effective seed dispersal of the study species. Our results emphasize the role of phenotypic plasticity in adaptive drought response and the importance of considering both adaptive and non-adaptive processes shaping intraspecific phenotypic variation, which is crucial for predicting plant population vulnerability to climate change.
Nekrasova, O., M. Pupins, O. Marushchak, V. Tytar, A. Martinez-Silvestre, A. Škute, A. Čeirāns, et al. 2024. Present and future distribution of the European pond turtle versus seven exotic freshwater turtles, with a focus on Eastern Europe. Scientific Reports 14. https://doi.org/10.1038/s41598-024-71911-4
Freshwater turtles are often used as terrarium pets, especially juveniles of exotic species. At the adult stage they are often released by their owners into the wild despite their high invasion potential. In Europe these thermophilic potentially invasive alien species occupy the habitats of the native European pond turtle Emys orbicularis (Linnaeus, 1758), with new records from the wild being made specifically in Eastern Europe (Latvia and Ukraine) during recent decades. Assessing the potential of alien freshwater turtles to establish in new territories is of great concern for preventing invasion risks while preserving native biodiversity in the present context of climate change. We explored this issue by identifying the present and future (by 2050) suitable habitats of the European pond turtle and several potentially invasive alien species of freshwater turtle already settled in Europe, using a geographic information system (GIS) modelling approach based on datasets from CliMond for climate, Near-global environmental information (NGEI) for freshwater ecosystems (EarthEnv) and Maxent modelling using open-access databases, data from the literature and original field data. Modelling was performed for seven species of alien freshwater turtles occurring from the extreme northern to southern borders of the European range of E. orbicularis : the pond slider Trachemys scripta (Thunberg and Schoepff, 1792), the river cooter Pseudemys concinna (Le Conte, 1830), the Florida red-bellied cooter Pseudemys nelsoni (Carr, 1938), the false map turtle Graptemys pseudogeographica (Gray, 1831), the Chinese softshell turtle Pelodiscus sinensis (Wiegmann, 1835), the Caspian turtle Mauremys caspica (Gmelin, 1774) and the Balkan terrapin Mauremys rivulata (Valenciennes, 1833). In Ukraine, the most Eastern limit of E. orbicularis distribution, were previously reported northern American originated T. scripta , M. rivulata , M. caspica , whereas in Latvia, Emys’ most northern limit, were additionally reported P. concinna , P. nelsoni , G. pseudogeographica and Asia originated P. sinensis . The resulting Species Distribution Models (SDM) were of excellent performance (AUC > 0.8). Of these alien species, the most potentially successful in terms of range expansion throughout Europe were T. scripta (34.3% of potential range expansion), G. pseudogeographica (24.1%), and M. caspica (8.9%) and M. rivulata (4.3%) mainly in Eastern Europe, especially in the south of Ukraine (Odesa, Kherson, Zaporizhzhia regions, and Crimean Peninsula). Correlation between the built SDMs for the native E. orbicularis and the invasive alien T. scripta was reliably high, confirming the highly likely competition between these two species in places they cooccur. Moreover, a Multiple Regression Analysis revealed that by 2050, in most of Europe (from the western countries to Ukraine), the territory overlap between E. orbicularis and potentially invasive alien species of freshwater turtles will increase by 1.2 times, confirming higher competition in the future. Importantly, by 2050, Eastern Europe and Ukraine are predicted to be the areas with most suitable habitats for the European pond turtle yet with most limited overlap with the invasive alien species. We conclude that Eastern Europe and Ukraine are the most relevant priority conservation areas for the European pond turtle where it is now necessary to take protective measures to ensure safe habitat for this native species on the long-term.
H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71
It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.
Blanco‐Sánchez, M., J. A. Ramírez‐Valiente, M. Ramos‐Muñoz, B. Pías, S. J. Franks, A. Escudero, and S. Matesanz. 2024. Range‐wide intraspecific variation reflects past adaptation to climate in a gypsophile Mediterranean shrub. Journal of Ecology 112: 1533–1549. https://doi.org/10.1111/1365-2745.14322
Phenotypic differences among populations stem from the interaction between neutral and adaptive processes, and phenotypic plasticity. Although clinal trait variation along climatic gradients often evolves in widely distributed species, it is unknown whether substrate specialization, such as that of Mediterranean gypsum plants, has constrained adaptation to climate.Using a common garden experiment with two contrasting watering treatments, we quantified phenotypic plasticity, assessed evidence for footprints of selection using FST – QST comparisons, and evaluated the ecological factors driving genetically based phenotypic differentiation of 11 populations encompassing the full environmental range of the gypsum shrub Lepidium subulatum.We found evidence for genetic differentiation among populations related to climatic differences, with populations from warmer and drier sites showing lower specific leaf area and leaf N, earlier phenology, greater water use efficiency and greater fitness. Multiple lines of evidence suggest that this differentiation was driven by past divergent selection rather than neutral processes. All populations showed high phenotypic plasticity, indicating that plasticity has not been selected against, even in populations from sites with harsher climatic conditions.Synthesis. Our results indicate that despite strong substrate specialization, adaptive differentiation related to climatic gradients occurs in this species. However, we also found that populations from mesic sites may be particularly vulnerable to future climate change given their relatively lower fitness under both wet and dry conditions.
Petitpierre, B., C. Arnold, L. N. Phelps, and A. Guisan. 2023. A tale of three vines: current and future threats to wild Eurasian grapevine by vineyards and invasive rootstocks. Diversity and Distributions. https://doi.org/10.1111/ddi.13780
AbstractAimEurasian grapevine (Vitis vinifera), one of the most important fruit crops worldwide, diverged from its wild and currently endangered relative (V. vinifera ssp. sylvestris) about 11,000 years ago. In the 19th century, detrimental phylloxera and disease outbreaks in Europe forced grapevine cultivation to use American Vitis species as rootstocks, which have now become naturalized in Europe and are starting to colonize similar habitats to the wild grapevine. Accordingly, wild grapevine now faces two additional threats: the expansion of vineyards and invasive rootstocks. Furthermore, climate change is expected to have significant impacts on the distribution of all grapevines in Europe. In this study, we quantified the distributional and bioclimatic overlap between grapewine's wild relative and the taxa associated with viticulture, under current and future climate.LocationEurope, North America.MethodsThe distributions of wild Eurasian grapevine, cultivated Eurasian grapevine and five American grapevine species used in rootstock breeding programs were linked to climate variables to model their bioclimatic niches. These ecological niche models were used to quantify the spatial and bioclimatic overlap between these seven Vitis taxa in Europe.ResultsNiche and spatial overlap is high between the wild, cultivated and rootstock grapevines, suggesting that existing conflicts between vineyards and wild grapevine conservation may be further complicated by naturalized rootstocks outcompeting the wild grapevine, especially under future scenarios of climate change. In the hottest scenario, only 76.1% of the current distribution of the Eurasian grapevine remains in suitable area.Main ConclusionsAs wild grapevine may ultimately provide a valuable gene pool for adapting viticulture to a changing world, these findings demonstrate the need for improved management of the wild grapevine and its natural habitat, to counteract the harmful effects of global change on the wild relatives of viticulture.
Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution. https://doi.org/10.1093/evolut/qpad140
Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.
Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009
Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.