Science Enabled by Specimen Data

Evankow, A. M., A. Yin, R. Zulfiqar, U. F. Ahmad, P. Nordenhaug, A. N. Khalid, L. Wang, and E. Timdal. 2025. Psora mediterranea (Lecanorales, Psoraceae), a new lichen species from Europe, including a new concept for P. himalayana and a revised key to the European species. Mycological Progress 24. https://doi.org/10.1007/s11557-025-02045-8

Herein, we describe Psora mediterranea , found in the Mediterranean region of Europe. Previously misidentified as Psora pseudorussellii based on morphology, P. mediterranea has a distinct molecular lineage and geographic distribution. This new species is phylogenetically the sister to a species that we henceforth epitypify as Psora himalayana , from the Himalayas. These sister Psora taxa are distinct due to morphology, current known geographic range, and preferred habitat. We provide two updated keys to the Psora species in Europe, including a key with morphologically similar species that may be confused with Psora in this region and a simplified “hand lens” key. To assist with ongoing DNA barcoding of lichens, we publish the first barcode ITS sequences from Psora gresinonis (an isotype) and the first sequences of P. pseudorussellii from North America. We also include sequences from understudied taxa, including Glyphopeltis , Romjularia , and Protomicarea . Further, we suggest updates to the circumscription of the Psoraceae by suggesting a new family for Glyphopeltis , Glyphopeltidaceae , and supporting the placement of Protomicarea in the Pilocarpaceae. Graphical Abstract

Glos, R. A. E., and M. G. Weber. 2025. Multiple metrics of trichome diversity support independent evolutionary hypotheses in blazingstars (Mentzelia: Loasaceae). Evolution. https://doi.org/10.1093/evolut/qpaf054

Abstract Trichomes are diverse and functionally important plant structures that vary in response to selection pressures across ecological gradients and evolutionary timescales. Classic hypotheses predict higher investment in trichomes in arid environments, at lower latitudes, and in long-lived species, as well as shifts in trichome production to reduce conflict between defense traits and mutualisms. However, tests of these hypotheses often rely on aggregate trichome metrics and neglect the rich diversity of trichome phenotypes. Here, we collected data on fine-scale patterns of trichome length, density, and type in 52 species of blazingstars (Mentzelia: Loasaceae) and tested whether individual trichome traits were consistent with existing adaptive hypotheses. Contrary to longstanding hypotheses, we found that Mentzelia species tend to display greater trichome investment in less arid environments and at higher latitudes. Barbed trichomes are significantly less common on the upper surface of the leaf, possibly reducing defense-pollination conflict. Species with larger petals (a proxy for reliance on insect pollinators) also shift investment away from insect-trapping hairs on the underside of the leaf. Examining trichome types separately revealed that different morphologies show distinct responses to abiotic and biotic factors, demonstrating the need to consider multiple axes of diversity when testing adaptive hypotheses for complex traits.

Zhao, J., J.-G. Wang, Y.-P. Hu, C.-J. Huang, S.-L. Fang, Z.-Y. Wan, R.-J. Li, et al. 2025. Phylogenetic Inferences and Historical Biogeography of Onocleaceae. Plants 14: 510. https://doi.org/10.3390/plants14040510

The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents.

Weiss, R. M., T. Haye, O. Olfert, S. Barkley, J. Gavloski, J. Tansey, J. Otani, and M. A. Vankosky. 2025. Bioclimatic analysis of cabbage seedpod weevil, Ceutorhyncus obstrictus (Marsham) (Coleoptera: Curculionidae) and canola, Brassica napus Linnaeus (Brassicaceae) responses to climate. Canadian Journal of Plant Science 105: 1–16. https://doi.org/10.1139/cjps-2024-0177

The cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae) is an important pest of brassicaceous crops, including canola ( Brassica napus Linnaeus). CSW consumes seeds of its host from inside the developing pods. It was introduced to North America from Europe and now occurs throughout the United States of America and Canada. Climate is one of the most important factors that determines species distribution and abundance. CLIMEX is a bioclimate model development application. Based on climate inputs, bioclimatic simulation models are tools that predict the potential geographic distribution and abundance of insects and plants. This study updated a previous bioclimatic model for CSW and presents a new model for canola. Validated models were used to conduct bioclimatic analysis of both species, the results of which provide a better understanding of how climate affects spatial distribution and abundance of CSW and the distribution and yield of canola. Application of incremental temperature and moisture scenarios were used to predict the spatial relationship of CSW risk and canola yield. We anticipate that the canola model will be applied to future bioclimatic studies of pests and beneficial insects of canola. Both the CSW and canola model can be used in climate change studies using datasets for predicted future climates.

Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005

Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.

Pan, Y., C. Fu, C. Tian, H. Zhang, X. Wang, and M. Li. 2025. Unraveling the Impact of Environmental Factors and Evolutionary History on Species Richness Patterns of the Genus Sorbus at Global Level. Plants 14: 338. https://doi.org/10.3390/plants14030338

Understanding the drivers of species richness patterns is a major goal of ecology and evolutionary biology, and the drivers vary across regions and taxa. Here, we assessed the influence of environmental factors and evolutionary history on the pattern of species richness in the genus Sorbus (110 species). We mapped the global species richness pattern of Sorbus at a spatial resolution of 200 × 200 km, using 10,652 specimen records. We used stepwise regression to assess the relationship between 23 environmental predictors and species richness and estimated the diversification rate of Sorbus based on chloroplast genome data. The effects of environmental factors were explained by adjusted R2, and evolutionary factors were inferred based on differences in diversification rates. We found that the species richness of Sorbus was highest in the Hengduan Mountains (HDM), which is probably the center of diversity. Among the selected environmental predictors, the integrated model including all environmental predictors had the largest explanatory power for species richness. The determinants of species richness show regional differences. On the global and continental scale, energy and water availability become the main driving factors. In contrast, climate seasonality is the primary factor in the HDM. The diversification rate results showed no significant differences between HDM and non-HDM, suggesting that evolutionary history may have limited impact on the pattern of Sorbus species richness. We conclude that environmental factors play an important role in shaping the global pattern of Sorbus species richness, while diversification rates have a lesser impact.

Olivares-Pinto, U., J. C. S. Lopes, C. Ruiz-Aguilar, Y. Oki, and G. W. Fernandes. 2025. Adapting to a shifting planet: The future of Drosera species amidst global challenges and conservation imperatives. Anthropocene 49: 100466. https://doi.org/10.1016/j.ancene.2025.100466

This study assesses the potential effects of climate change on the distribution of the Drosera genus, which is a carnivorous plant group widely distributed in South America. The Drosera species act as adequate biological indicators, with their fitness performance reflecting the health of ecosystems. Through the application of species distribution models and the analysis of bioclimatic variables, the adaptability of 39 Drosera species to evolving climatic conditions was assessed, revealing their capacity to thrive in diverse habitats, from nutrient-deficient soils to regions with high atmospheric CO2 concentrations. While many species show adaptability, environmental forecasts using two General Circulation Models indicate a decrease in favorable habitats by 2050 and 2070. It is expected that about 71.79 % of species will encounter shrinking habitat suitability, while 28.21 % may see an increase in habitat suitability. This anticipated habitat loss underscores the critical need for proactive conservation measures, including habitat preservation, ecological restoration, assisted migration, and genetic conservation efforts, to counteract the adverse effects of climate change. Additionally, the study highlights the importance of refining species distribution models and deepening our understanding of the ecological dynamics of Drosera species in response to environmental changes. By offering insights into the challenges and opportunities for conserving Drosera species in a changing climate, this work lays a solid groundwork for future ecological research and conservation initiatives. It calls for an integrated approach that combines scientific inquiry with strategic conservation actions to ensure the survival of these unique plant group and ecological integrity during global environmental shifts.

Gang, D., Z. Li, Q. Lu, H. Ji, Y. Cao, H. Yu, Y. Zhao, et al. 2025. Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure. Environmental Pollution 367: 125636. https://doi.org/10.1016/j.envpol.2025.125636

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level. Quantitative and air flow-assisted ionization mass spectrometry imaging results showed that warming significantly increased the accumulation of PFOS (3.53 L/kg) in the submerged leaf tissues. Accumulation of PFASs altered H. verticillata intracellular scavenging enzymes, an effect that may be exacerbated by 4 °C warming. Warming and PFASs influenced photosynthesis, biological rhythms, and ecological stoichiometry, causing a decrease in metabolites linked to the tricarboxylic acid cycle and amino acid metabolism, which compromised nitrogen use efficiency (9.9%–30.4% reduction in nitrogen content, 0.8%–22.8% increase in C:N ratios). Additionally, metabolites are linked to the antioxidant system or cell wall components, with linoleic acid decreasing by 17.1%–82.8% and carbohydrate-related compounds dropping by 52.2%–89.0%. Our modeling analyses revealed that H. verticillata enriched with PFASs could pose secondary risks when consumed by herbivorous fish (Ctenopharyngodon idellus) under warming, potentially affecting food chain dynamics.

Simon, A., D. Parker, J. A. Chimal-Ballesteros, J. Orlando, and B. Goffinet. 2024. The identity of the North American endemic Dendriscocaulon intricatulum and two southern South American cyanomorphs in the Peltigerales. The Bryologist 127. https://doi.org/10.1639/0007-2745-127.4.441

(no abstract available)

Liu, H., X. Feng, Y. Zhao, G. Lv, C. Zhang, Aruhan, T.-A. Damba, et al. 2024. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Frontiers in Pharmacology 15. https://doi.org/10.3389/fphar.2024.1449426

The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.