Science Enabled by Specimen Data
Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3
Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Sękiewicz, K., M. Salvà-Catarineu, Ł. Walas, A. Romo, H. Gholizadeh, A. Naqinezhad, V. Farzaliyev, et al. 2024. Consequence of habitat specificity: a rising risk of habitat loss for endemic and sub-endemic woody species under climate change in the Hyrcanian ecoregion. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02222-7
Endemic species are more impacted by climate change than other taxa. However, assessing the vulnerability of endemics to these changes in some regions, such as the Hyrcanian forest, is limited, despite its importance for biodiversity and ecosystem function. To address the question of expected habitat shifts under climate change across the Hyrcanian ecoregion, we built an ensemble of species distribution models (SDM) under two emission scenarios (RCP 4.5 and RCP 8.5) for 15 endemic woody taxa. To identify the potential priority conservation areas, we also applied a spatial prioritization approach. Overall, our results suggest that the impacts of climate change are more severe on the eastern parts of the region (Golestan) and the Talysh Mountains (north-western Hyrcanian ecoregion) with over 85% and 34% loss of suitable habitats over the next 80 years. The central part of the Alborz Mountains (Mazandaran) and some areas in the Talysh Mountains could be potential climatic refugia under the future conditions for endemic taxa. The most prominent changes are expected for Ruscus hyrcanus , Gleditsia capsica , Acer velutinum , Frangula grandifolia , and Buxus hyrcana . The worrying predicted loss of suitable habitats for most studied taxa would dramatically affect the stability and resilience of forests, threatening thus biodiversity of the Hyrcanian ecoregion. We present the first estimation of the potential risks involved and provide useful support for regional climate-adaptation strategy, indicating potential conservation priority areas for maintaining and preserving its resources. Notably, only 13.4% of areas designated for conservation and management under climate change will be located within the current Hyrcanian protected areas, yet the majority of these areas are classified as low priority.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.
Denk, T., G. W. Grimm, A. L. Hipp, J. M. Bouchal, E.-D. Schulze, and M. C. Simeone. 2023. Niche evolution in a northern temperate tree lineage: biogeographic legacies in cork oaks (Quercus sect. Cerris). Annals of Botany. https://doi.org/10.1093/aob/mcad032
Abstract Background and Aims Cork oaks (Quercus sect. Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects may explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. Methods We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction-site associated DNA sequencing (RAD-seq) and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death (FBD) model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters, and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. Key Results East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form, and texture partly correlates with multiple transitions from ancestral humid temperate climates to Mediterranean, arid, and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. Conclusions Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (sect. Ilex) also originated in temperate biomes but migrated south- and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographic histories and deep-time phylogenetic legacies—in cold and drought tolerance, nutrient storage, and fire resistance—thus account for the modern species mosaic of Western Eurasian oak communities, which comprise oaks belonging to four sections.
Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany. https://doi.org/10.1002/ajb2.16059
(no abstract available)
Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235
The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…
Filartiga, A. L., A. Klimeš, J. Altman, M. P. Nobis, A. Crivellaro, F. Schweingruber, and J. Doležal. 2022. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany 129: 567–582. https://doi.org/10.1093/aob/mcac014
Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Karger, D. N., M. Kessler, O. Conrad, P. Weigelt, H. Kreft, C. König, and N. E. Zimmermann. 2019. Why tree lines are lower on islands—Climatic and biogeographic effects hold the answer J. Grytnes [ed.],. Global Ecology and Biogeography 28: 839–850. https://doi.org/10.1111/geb.12897
Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…