Science Enabled by Specimen Data
Xu, L., Z. Song, T. Li, Z. Jin, B. Zhang, S. Du, S. Liao, et al. 2024. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). Plant Diversity. https://doi.org/10.1016/j.pld.2024.10.003
Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.
Paquette, H. A., R. T. McMullin, and Y. F. Wiersma. 2023. The importance of taxonomy for determining species distribution: a case study using the disjunct lichen Brodoa oroarctica. Botany. https://doi.org/10.1139/cjb-2023-0096
Species-focused conservation requires a thorough understanding of species’ distributions. Delineating a species’ distribution requires taxonomic knowledge and adequate occurrence data. For plants and fungi, herbaria represent a valuable source of large-scale occurrence data. Advances in digital technology mean that data from many herbarium collections worldwide are now easily accessible. However, species concepts can change over time requiring herbarium records to be re-examined and databases updated, which does not always occur synchronously across all collections. Therefore, non-critical use of these data can promote inaccuracies in understanding species distributions. Taxonomic revisions are common in understudied organisms, such as lichens. Here, we illustrate how changing taxonomy and non-critical acceptance of online data affects our understanding of disjunct distributions, using the lichen Brodoa oroarctica (Krog) Goward as an example. Defining the distribution of the arctic lichen B. oroarctica is confounded by changing taxonomy and uncertainty of herbarium records that pre-date taxonomic revisions. We review the distribution of this species in the literature and in aggregate occurrence databases, and verify herbarium specimens that represent disjunct occurrences in eastern North America to present an updated account of its distribution and frequency in eastern North America. We show that knowledge of changing species taxonomy is essential to depicting accurate species distributions.
Mienna, I. M., J. D. M. Speed, M. Bendiksby, A. H. Thornhill, B. D. Mishler, and M. D. Martin. 2019. Differential patterns of floristic phylogenetic diversity across a post‐glacial landscape. Journal of Biogeography 47: 915–926. https://doi.org/10.1111/jbi.13789
Aim: In this study, we explored spatial patterns of phylogenetic diversity (PD) and endemism in the flora of Norway and tested hypothesized post‐glacial environmental drivers of PD, including temperature, precipitation, edaphic factors and time since glacial retreat. Location: Norway. Taxon: Vascula…