Science Enabled by Specimen Data
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.
da Conceição, E. de O., T. Mantovano, R. de Campos, E. V. do Couto, J. H. D. Ferreira, T. F. Rangel, K. Martens, et al. 2023. Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios. Hydrobiologia. https://doi.org/10.1007/s10750-023-05144-3
While many studies predict changes in the distribution of individual species as a result of climate change, few studies have assessed such changes at the community level for aquatic invertebrates. We used ostracods (bivalved micro-crustaceans) to assess the effects of climate change on regional species richness, (re-) distribution and community composition across the river basins of the Southern Cone of South America. Using a range of niche-based models, we present projections of changes in diversity components in the light of two scenarios on increased carbon emissions: the moderate-optimistic (RCP 4.5) and the pessimistic (RCP 8.5) scenarios from four climate models on 2050 and 2080 scenarios. Future projections show increase in the number of (mapped) cells with a richness up to five species as compared to present-day situations. La Plata basin (LPLA) presents the highest species loss, mainly in the Paraguay and Paraná rivers, while the species gain occurred mainly in the La Puna Region, North Chile-Pacific Coast and southern LPLA basins. Global change might impact ostracod communities even on a medium term (2050). Despite losses of local species in all future scenarios, a small portion of the LPLA was identified as a potential future climatic refugia for ostracod communities, while the distribution area in Patagonia was predicted to be extremely small for some ostracods at the southernmost parts of South Argentina-South Atlantic Coast and South Chile-Pacific Coast basins in both futures. These results indicate that non-model organisms can also contribute greatly to formulate evidence-based management plans for aquatic ecosystems under climate change scenarios.
Granja-Fernández, R., B. Maya-Alvarado, F. A. Rodríguez-Zaragoza, and A. López-Pérez. 2023. Ophiuroidea (Echinodermata) diversity partitioning across the eastern tropical Pacific. Regional Studies in Marine Science 60: 102835. https://doi.org/10.1016/j.rsma.2023.102835
Ophiuroidea is one of the most suitable marine groups for exploring diversity partitioning in the ocean due to its wide distribution and particular lifestyles. Nevertheless, diversity and its variation have yet to be investigated, and even basic information for large areas such as the eastern tropical Pacific (ETP) is still lacking. The present contribution explores α, β, and γ-diversity patterns of Ophiuroidea from the ETP at four spatial scales (Operational Geographic Units, Ecoregions, Provinces, and Realms). Based on literature records, databases, and scientific collections, an occurrence matrix was constructed for 69 shallow water (0–200 m) Ophiuroidea of the ETP (Mexico–Peru). Diversity evaluation based on rarefaction curves indicated that the observed richness tends to reach the asymptote. At the province and the ecoregion levels, β-diversity was the most important component explaining γ-diversity. The components that mainly contributed to the differentiation between provinces and ecoregions were the intersection of nestedness and β-diversity. PERMANOVA and SIMPER results showed that species composition presented significant differences at all spatial levels. The PCO ordination indicated that the first component (PCO1) explained the variation in species composition in a longitudinal gradient between coastal and oceanic ecoregions, while PCO2 showed a latitudinal gradient. The shade plot yielded three clusters (northern, southern, and widely distributed species). In general, α-diversity was explained by differences in sampling effort and methods; in contrast, β-diversity and its components were mainly explained by patterns and processes occurring at different spatial scales (provinces and ecoregions) such as oceanographic conditions, geographic extension, dispersal, and environmental heterogeneity. This work represents the first attempt to analyze the distribution patterns of shallow-water Ophiuroidea from the ETP.
Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360
AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.
Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022
Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.
Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235
The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…
Espindola, S., E. Vázquez‐Domínguez, M. Nakamura, L. Osorio‐Olvera, E. Martínez‐Meyer, E. A. Myers, I. Overcast, et al. 2022. Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive red‐eared slider turtle. Molecular Ecology 31: 1766–1782. https://doi.org/10.1111/mec.16356
Non-native (invasive) species offer a unique opportunity to study the geographical distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Tra…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Qu, J., Y. Xu, Y. Cui, S. Wu, L. Wang, X. Liu, Z. Xing, et al. 2021. MODB: a comprehensive mitochondrial genome database for Mollusca. Database 2021. https://doi.org/10.1093/database/baab056
Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…