Science Enabled by Specimen Data

Ellestad, P., Forest, F., Serpe, M., Novak, S. J., & Buerki, S. (2021). Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae). Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boab005 https://doi.org/10.1093/botlinnean/boab005

Although vanilla is one of the most popular flavours in the world, there is still uncertainty concerning the native distribution of the species that produces it, Vanilla planifolia. To circumscribe the native geographical extent of this economically important species more precisely, we propose a new…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Chase, B. M., Boom, A., Carr, A. S., Chevalier, M., Quick, L. J., Verboom, G. A., & Reimer, P. J. (2019). Extreme hydroclimate response gradients within the western Cape Floristic region of South Africa since the Last Glacial Maximum. Quaternary Science Reviews, 219, 297–307. doi:10.1016/j.quascirev.2019.07.006 https://doi.org/10.1016/j.quascirev.2019.07.006

The Cape Floristic Region (CFR) is one of the world's major biodiversity hotspots, and much work has gone into identifying the drivers of this diversity. Considered regionally in the context of Quaternary climate change, climate stability is generally accepted as being one of the major factors promo…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

Peyre, G., Lenoir, J., Karger, D. N., Gomez, M., Gonzalez, A., Broennimann, O., & Guisan, A. (2020). The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science. doi:10.1111/jvs.12898 https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Prieto-Torres, D. A., Lira-Noriega, A., & Navarro-Sigüenza, A. G. (2020). Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2020.01.002 https://doi.org/10.1016/j.pecon.2020.01.002

We assessed the effects of global climate change as a driver of spatio-temporal biodiversity patterns in bird assemblages associated to Neotropical seasonally dry forests (NSDF). For this, we estimated the geographic distribution of 719 bird species under current and future climate (2050 and 2070) p…

Chevalier, M. (2019). Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Global and Planetary Change, 175, 27–35. doi:10.1016/j.gloplacha.2019.01.016 https://doi.org/10.1016/j.gloplacha.2019.01.016

The field of quantitative palaeoclimatology has made significant progress in the past decades. However, this progress has been spatially heterogeneous and strong discrepancies – both in terms of quality and density – exist between Europe and North America and the rest of the world. The need to balan…

Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039. doi:10.1073/pnas.1713819115 https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…