Science Enabled by Specimen Data

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Chollett, I., & Robertson, D. R. (2020). Comparing biodiversity databases: Greater Caribbean reef fishes as a case study. Fish and Fisheries. doi:10.1111/faf.12497 https://doi.org/10.1111/faf.12497

There is a widespread need for reliable biodiversity databases for science and conservation. Among the many public databases available, we lack guidance as to how their data quality varies. Here, we compare species distribution data for a well known regional reef fish fauna extracted from five globa…

Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., & Genner, M. J. (2020). Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology. doi:10.1016/j.cub.2020.02.043 https://doi.org/10.1016/j.cub.2020.02.043

Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at…

Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., & Cheung, W. W. L. (2020). Projecting global mariculture diversity under climate change. Global Change Biology. doi:10.1111/gcb.14974 https://doi.org/10.1111/gcb.14974

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture’s substantial contribution to global seafood production and its growing significance in recent decades, it…

Smith, J. A., Benson, A. L., Chen, Y., Yamada, S. A., & Mims, M. C. (2020). The power, potential, and pitfalls of open access biodiversity data in range size assessments: Lessons from the fishes. Ecological Indicators, 110, 105896. doi:10.1016/j.ecolind.2019.105896 https://doi.org/10.1016/j.ecolind.2019.105896

Geographic rarity is a driver of a species’ intrinsic risk of extinction. It encompasses multiple key components including range size, which is one of the most commonly measured estimates of geographic rarity. Range size estimates are often used to prioritize conservation efforts when there are mult…

Milheiras, S. G., & Mace, G. M. (2019). Assessing ecosystem service provision in a tropical region with high forest cover: Spatial overlap and the impact of land use change in Amapá, Brazil. Ecological Indicators, 99, 12–18. doi:10.1016/j.ecolind.2018.12.013 https://doi.org/10.1016/j.ecolind.2018.12.013

Ecosystem service (ES) assessments have flourished globally in recent years and are now frequently used by policymakers and environmental managers. However, data scarce regions continue to be less well studied, limiting the comprehensiveness of the approach and its potential benefits. Here we aim to…