Bionomia will be offline 2024-05-19 12:00 UTC for 1 hr to refresh data from the Global Biodiversity Information Facility.

Science Enabled by Specimen Data

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Louw, G. J., L. J. Potgieter, and D. M. Richardson. 2024. Myoporum (Scrophulariaceae): Introduction, naturalization, and invasion of an enigmatic tree genus in South Africa. South African Journal of Botany 168: 529–541. https://doi.org/10.1016/j.sajb.2024.03.022

Myoporum is a genus of trees and shrubs native to the Northern Hemisphere that has been introduced to many parts of the world, mainly for ornamental purposes. We assessed the introduction history, distribution, and extent of naturalization/invasion for Myoporum species in South Africa.Information was collated to determine key events associated with the introduction, establishment, and naturalization of Myoporum in South Africa. Data were collated to determine the current distribution of the genus in South Africa. Twenty sites in the Western Cape were sampled to determine correlates of naturalization. Myoporum was first recorded in South Africa in 1934. Three species were confirmed to be present in South Africa: M. insulare, M. laetum and M. montanum (37 %, 25 % and 24 % of all iNaturalist records respectively). Most records are from the Western Cape (91 %) and small parts of the Eastern Cape; isolated populations occur in Gauteng and the Northern Cape. We could not confirm the presence M. petiolatum, M. tenuifolium or M. tetrandrum. Field surveys revealed widespread naturalization of M. insulare (46 % of all Research Grade observations in iNaturalist); this species was categorized code D1 in the introduction-naturalization-invasion continuum. Myoporum laetum (C3) and M. montanum (C2) are also widely naturalized but over smaller areas. Naturalized populations comprised predominantly juvenile M. insulare plants occurring in highly disturbed (transformed) habitats. Formal risk analyses for all Myoporum species in South Africa are needed as the basis for re-evaluation of their status in national legislation.

Ortíz-Martínez, A., C. P. Ornelas-García, D. A. Moo-Llanes, D. Piñero, J. A. Pérez de la Rosa, P. Peláez, and A. Moreno-Letelier. 2024. Species delimitation using multiple sources of evidence from the Pinus strobiformis-Pinus ayacahuite Species Complex. Botanical Sciences 102: 482–498. https://doi.org/10.17129/botsci.3364

Background: The Trans-Mexican Volcanic Belt (TMVB) in central Mexico is characterized by peaks of high altitude and geologic instability. In this zone, Pinus strobiformis and Pinus ayacahuite form a contact zone with Pinus veitchii. The taxonomical circumscription of white pines in Central Mexico has been unstable, especially regarding the status of P. veitchii. Questions: What are the species boundaries of the montane Mexican white pines species complex? Is Pinus veitchii a hybrid or an independently evolving lineage? Studied species: Pinus strobiformis, Pinus veitchii and Pinus ayacahuite species complex. Study site and dates: United States of America and Mexico from 2003 to 2022. Methods: We performed multivariate analyses on 10 morphological characters and characterized the climatic niche divergence and the genetic differentiation using SNPs. Results: Our results showed that P. veitchii is morphologically similar to P. strobiformis, but does not have intermediate morphological values with P. ayacahuite. The ecological niche differentiation was not significant.  Genetic analyses showed P. veitchii as an independent lineage with evidence of admixture with P. ayacahuite, suggesting a gene flow but not a hybrid origin. Conclusions: Two of the three lines of evidence support three independent lineages. Environmental information showed niche conservatism, morphology and genetic structure showed differentiation of all three taxa, with a greater morphological similarity between P. strobiformis and P. veitchii, and genetic analyses recovered evidence of introgression, suggesting a complex demographic history in the Trans Mexican Volcanic Belt.

Ashraf, U., T. L. Morelli, A. B. Smith, and R. R. Hernandez. 2024. Aligning renewable energy expansion with climate-driven range shifts. Nature Climate Change 14: 242–246. https://doi.org/10.1038/s41558-024-01941-3

Fossil fuel dependence can be reduced, in part, by renewable energy expansion. Increasingly, renewable energy siting seeks to avoid significant impacts on biodiversity but rarely considers how species ranges will shift under climate change. Here we undertake a systematic literature review on the topic and overlay future renewable energy siting maps with the ranges of two threatened species under future climate scenarios to highlight this potential conflict. The authors conduct a systematic literature review on renewable energy expansion and biodiversity. Comparing renewable energy siting maps with the ranges of two threatened species under future climates, they highlight the potential conflict and need for consideration of climate-change-driven range shifts.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Prochazka, L. S., S. Alcantara, J. G. Rando, T. Vasconcelos, R. C. Pizzardo, and A. Nogueira. 2024. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. New Phytologist. https://doi.org/10.1111/nph.19601

Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention.We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches.Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource‐rich environments.Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource‐limited habitat and the other relying on reserves and root resprouting systems in resource‐abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low‐resource and high‐disturbance environments.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Issaly, E. A., M. C. Baranzelli, N. Rocamundi, A. M. Ferreiro, L. A. Johnson, A. N. Sérsic, and V. Paiaro. 2023. Too much water under the bridge: unraveling the worldwide invasion of the tree tobacco through genetic and ecological approaches. Biological Invasions. https://doi.org/10.1007/s10530-023-03189-y

Understanding how, and from where, invasive species were introduced is critical for revealing the invasive mechanism, explaining the invasion success, and providing crucial insights for effective management. Here, we combined a phylogeographic approach with ecological niche modeling comparisons to elucidate the introduction mode and source of Nicotiana glauca , a native South American species that is now invasive worldwide. We tested three different scenarios based on the invasion source—random native, restricted native, and bridgehead invasive—considering genetic diversity and climatic niche comparisons among native and invaded areas. We found three genetic lineages geographically and climatically differentiated within the native range. Only one of these genetic groups contained the invasive haplotypes, but showed no climatic niche overlap with any invaded area. Conversely, one invaded area located in western South America, with more genetic diversity than other invaded areas but less than the native range, showed climatic niche overlap with almost all other invaded areas worldwide. These findings indicate that N. glauca first likely invaded the southernmost areas beyond its native range, forming a bridgehead invasive source, from which the species subsequently invaded other regions around the world. Invasiveness would have been fostered by changes in the environmental preferences of the species in the bridgehead area, towards drier, colder and less seasonal climates, becoming the actual source of invasion to areas climatically similar throughout the world. The fine scale resolution analyses combining genetic and climatic approaches within the native range were essential to illuminating the introduction scenario of this invasive species.

Islomiddinov, Z. Sh., I. M. Mustafaev, J. P. Shirqulova, B. S. Khabibullaev, Y. W. Lim, et al. 2023. The first record of Pisolithus arhizus (Sclerodermataceae, Basidiomycota) in Central Asia. Ukrainian Botanical Journal 80: 337–342. https://doi.org/10.15407/ukrbotj80.04.337

Pisolithus is a genus of gasteroid mycorrhizal symbionts associated with trees of several families of angiosperms and gymnosperms and distributed almost worldwide. Here we report a new record of Pisolithus arhizus from Tashkent, Uzbekistan, the first record of this species in Central Asia. The fruit bodies of P. arhizus were collected in several locations within the city and identified based on morphological characters. The ectomycorrhizal fungus formed symbiotic relationships with Juniperus sp. and Quercus sp. We provide its morphological description and photographs and also discuss our findings in the context of previously known records of this species.