Science Enabled by Specimen Data

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Carrasco, J., Price, V., Tulloch, V., & Mills, M. (2020). Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation. doi:10.1007/s10531-020-01947-1 https://doi.org/10.1007/s10531-020-01947-1

Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…

Monroe, J. G., Gill, B., Turner, K. G., & McKay, J. K. (2019). Drought regimens predict life history strategies in Heliophila. New Phytologist. doi:10.1111/nph.15919 https://doi.org/10.1111/nph.15919

Explaining variation in life history strategies is an enduring goal of evolutionary biology and ecology. Early theory predicted that for plants, annual and perennial life histories reflect adaptation to environments that experience alternative drought regimens. Nevertheless, empirical support for th…

Park, D. S., & Razafindratsima, O. H. (2018). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148–161. doi:10.1111/ecog.03825 https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …

Ashraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere, 8(5), e01825. doi:10.1002/ecs2.1825 https://doi.org/10.1002/ECS2.1825

Ecological niche modeling (and the related species distribution modeling) has been used as a tool with which to assess potential impacts of climate change processes on geographic distributions of species. However, the factors introducing variation into niche modeling outcomes are not well understood…