Science Enabled by Specimen Data

Hanzen, C. C., M. C. Lucas, O. L. F. Weyl, S. M. Marr, G. O’Brien, and C. T. Downs. 2022. Slippery customers for conservation: Distribution and decline of anguillid eels in South Africa. Aquatic Conservation: Marine and Freshwater Ecosystems 32: 1277–1290. https://doi.org/10.1002/aqc.3823

Four anguillid eel species occur in the western Indian Ocean rivers of Africa: Anguilla bengalensis, Anguilla bicolor, Anguilla marmorata and Anguilla mossambica. These catadromous fishes face multiple stressors, including habitat alteration and deterioration, barriers to migration, pollution and the adverse impacts of alien species, but knowledge of eel species occurrence, abundance and ecology in Africa remains poor.This study investigated the present and historical distribution of anguillid eels and the potential associated drivers of declines at the southern extremities of their ranges in South Africa. Data analysed included sampling conducted in KwaZulu–Natal and Eastern Cape between 2015 and 2020, and secondary data extracted from databases, museums and local management agencies.The median extent of inland penetration increased as follows: 22 km for A. bicolor, 29 km for A. marmorata, 94 km for A. bengalensis and 293 km for A. mossambica. The median altitude followed a similar pattern.Extent of occurrence analyses were carried out at the regional level in KwaZulu–Natal. The sampling data on present distribution (2015–2020), compared with historical data, suggests declines in the extents of occurrence of the four eel species in KwaZulu–Natal, ranging between 31 and 48% in the last 30 years and between 35 and 82% since the 1950s.With increasing human threats in the region, especially from watercourse modification and water abstraction, further declines for these species are expected. Conservation measures recommended include the maintenance or restoration of the ecological connectivity of important rivers and the implementation of freshwater protected areas. Although eels are at present not widely exploited in South Africa, there is a need for fisheries regulations to manage sustainable commercial exploitation.

Espindola, S., E. Vázquez‐Domínguez, M. Nakamura, L. Osorio‐Olvera, E. Martínez‐Meyer, E. A. Myers, I. Overcast, et al. 2022. Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive red‐eared slider turtle. Molecular Ecology 31: 1766–1782. https://doi.org/10.1111/mec.16356

Non-native (invasive) species offer a unique opportunity to study the geographical distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Tra…

Estrada-Peña, A., and N. Fernández-Ruiz. 2022. Is composition of vertebrates an indicator of the prevalence of tick-borne pathogens? Infection Ecology & Epidemiology 12. https://doi.org/10.1080/20008686.2022.2025647

Communities of vertebrates tend to appear together under similar ranges of environmental features. This study explores whether an explicit combination of vertebrates and their contact rates with a tick vector might constitute an indicator of the prevalence of a pathogen in the quest for ticks at the…

Cardador, L., P. Abellán, and T. M. Blackburn. 2021. Incorporating phylogeographic information in alien bird distribution models increases geographic extent but not accuracy of predictions. Biological Invasions 24: 683–695. https://doi.org/10.1007/s10530-021-02673-7

Species distribution models (SDM) have been proposed as valuable first screening tools for predicting species responses to new environmental conditions. SDMs are usually conducted at the species level, assuming that species-environment relationships are a species-specific feature that do not evolve …

Xian, Y., Y. Lu, and G. Liu. 2022. Is climate change threatening or beneficial to the habitat distribution of global pangolin species? Evidence from species distribution modeling. Science of The Total Environment 811: 151385. https://doi.org/10.1016/j.scitotenv.2021.151385

Global climate change caused by fossil energy consumption is strongly threatening the species diversity of mammals. In particular, changes in temperature and precipitation have affected the habitat of pangolins. Thus, we employed the MaxEnt modeling approach to simulate the potential habitat distrib…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Onditi, K. O., X. Li, W. Song, Q. Li, S. Musila, J. Mathenge, E. Kioko, and X. Jiang. 2021. The management effectiveness of protected areas in Kenya. Biodiversity and Conservation 30: 3813–3836. https://doi.org/10.1007/s10531-021-02276-7

Merely designating new and/or expanding existing protected areas (PAs) does not guarantee the protection of critical ecosystems and species. The management of PAs must be effective to sustain meaningful conservational outcomes. We inferred the management effectiveness of PAs in Kenya based on the re…

Savini, T., M. Namkhan, and N. Sukumal. 2021. Conservation status of Southeast Asian natural habitat estimated using Galliformes spatio-temporal range decline. Global Ecology and Conservation 29: e01723. https://doi.org/10.1016/j.gecco.2021.e01723

Southeast Asia has arguably the highest biodiversity loss due to the high deforestation rate and hunting pressure. In the region, 55 species of the family Phasianidae can be found in all available land habitats from lowland plains up to high-elevation mountainous areas. As ground-dwelling birds, the…

McManamay, R. A., C. R. Vernon, and H. I. Jager. 2021. Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways. Biological Conservation 260: 109234. https://doi.org/10.1016/j.biocon.2021.109234

Addressing climate mitigation while meeting global electrification goals will require major transitions from fossil-fuel dependence to large-scale renewable energy deployment. However, renewables require significant land assets per unit energy and could come at high cost to ecosystems, creating pote…

Fanelli, A., and D. Buonavoglia. 2021. Risk of Crimean Congo haemorrhagic fever virus (CCHFV) introduction and spread in CCHF-free countries in southern and Western Europe: A semi-quantitative risk assessment. One Health 13: 100290. https://doi.org/10.1016/j.onehlt.2021.100290

Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne viral zoonotic disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV). The disease is usually asymptomatic in domestic and wild animals, both of which may act as reservoirs of the virus. CCHF is endemic in parts of Africa, Asia, …