Science Enabled by Specimen Data

Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M., & Piera, J. (2022). Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.802235 https://doi.org/10.3389/fmars.2021.802235

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…

Filartiga, A. L., Klimeš, A., Altman, J., Nobis, M. P., Crivellaro, A., Schweingruber, F., & Doležal, J. (2022). Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany. https://doi.org/10.1093/aob/mcac014 https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

TREVIÑO-ZEVALLOS, I., GARCÍA-CUNCHILLOS, I., & LADO, C. (2021). New records of Myxomycetes (Amoebozoa) from the tropical Andes. Phytotaxa, 522(3), 231–239. doi:10.11646/phytotaxa.522.3.6 https://doi.org/10.11646/phytotaxa.522.3.6

The Myxomycetes comprise a remarkably diverse group of organisms within Amoebozoa, with over 1000 species currently recognized. These organisms, at the end of their life cycles produce fruiting bodies which are the basis for their systematics. Despite being a biodiversity hotspot, the tropical Andes…

Fernández‐López, J., Telleria, M. T., Dueñas, M., May, T., & Martín, M. P. (2021). DNA barcode analyses improve accuracy in fungal species distribution models. Ecology and Evolution. doi:10.1002/ece3.7737 https://doi.org/10.1002/ece3.7737

Species distribution models based on environmental predictors are useful to explain a species geographic range. For many groups of organisms, including fungi, the increase in occurrence data sets has generalized their use. However, fungal species are not always easy to distinguish, and taxonomy of m…

Blaalid, R., & Khomich, M. (2021). Current knowledge of Chytridiomycota diversity in Northern Europe and future research needs. Fungal Biology Reviews, 36, 42–51. doi:10.1016/j.fbr.2021.03.001 https://doi.org/10.1016/j.fbr.2021.03.001

Chytridiomycota is the most species-rich phylum of basal lineage fungi involved in vital processes in both terrestrial and aquatic ecosystems. Still, the diversity and richness of this group remains cryptic. In Northern Europe, few species have been recorded despite the numerous intact lake systems …

Bazzicalupo, A. L., Whitton, J., & Berbee, M. L. (2019). Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. doi:10.1111/jbi.13617 https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

Grünig, M., Mazzi, D., Calanca, P., Karger, D. N., & Pellissier, L. (2020). Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology, 3(1). doi:10.1038/s42003-020-0962-9 https://doi.org/10.1038/s42003-020-0962-9

Global changes pose both risks and opportunities to agriculture and forestry, and biological forecasts can inform future management strategies. Here, we investigate potential land-use opportunities arising from climate change for these sectors in Europe, and risks associated with the introduction an…

[1]P. Talhinhas, “An annotated checklist of rust fungi (Pucciniales) occurring in Portugal,” Sydowia An International Journal of Mycology, vol. 71, pp. 65–84, Jun. 2019. https://doi.org/10.12905/0380.sydowia71-2019-0065

In this work we have retrieved and analysed data for 2319 occurrences of rust fungi from 246 Pucciniales taxa in Portugal based on 115 publications and our own surveys, totalizing 683 rust taxon-host taxon unique combinations. This list was updated according to current taxonomic framework and georef…