Science Enabled by Specimen Data

Dahal, S., C. M. Siniscalchi, and R. A. Folk. 2025. A phylogenomic investigation into the biogeography of the Mexico–eastern U.S. disjunction in Symphyotrichum. American Journal of Botany 112. https://doi.org/10.1002/ajb2.70021

AbstractPremiseBiotic disjunctions have attracted scientific attention for the past 200 years. Despite being represented in many familiar plants (such as bald cypress, flowering dogwood, sweetgum, partridgeberry, etc.), the eastern North American (ENA)–Mexican (M) disjunction remains poorly understood. Major outstanding questions include the divergence times of taxa exhibiting the disjunction and environmental/geological processes that may underlie the disjunction. Symphyotrichum Nees (Asteraceae), one of the most diverse genera in the eastern USA, displays several examples of disjunct ENA–M taxa.MethodsWe generated target capture data using the Angiosperms353 baitset and generated the first well‐sampled phylogenomic hypothesis for Symphyotrichum and its close relatives. Focusing on S. subgenus Virgulus, we used MCMCTREE to perform divergence time estimation and the R package BioGeoBEARS to infer ancestral regions and biogeographic transitions between North America and Mexico. Finally, we used the ancestral niche reconstruction method Utremi to test for a role of historical aridification in generating the disjunction.ResultsOur molecular data suggest a recent radiation of Symphyotrichum at the Plio‐Pleistocene boundary (~2.5 mya), with early connections to Mexico in ancestral lineages that closed off shortly after and were followed by vicariance across this region. Except for some present‐day broadly distributed species, there is a complete lack of movement between ENA and M after ~0.5 mya.ConclusionsA reconstructed disjunct distribution of suitable habitat in Pleistocene climatic models corroborates results from biogeographic modeling and confirms glacial cycles are more likely to be associated with the breakup of ENA–M biogeographic connections.

Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005

Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.

Chukwuma, E. C., and L. T. Mankga. 2025. A MaxEnt model for estimating suitable habitats for some important Pelargonium species in South Africa. Journal for Nature Conservation 84: 126845. https://doi.org/10.1016/j.jnc.2025.126845

Accessing the rich biodiversity in tropical ecosystems has been of great interest to scientists across the globe. While several species have been underutilized despite their wide distribution, many others are faced with continuous population decline across their native range. Here, we amassed occurrence data and environmental variables to estimate the spatial distribution and habitat suitability of six important Pelargonium species whose conservation status in South Africa has been of concern. These were combined and used to project the future habitats under 2 Global Climate Models (GCMs) and 2 Scenarios (RCP 4.5 & 8.5). We overlayed our area maps and conducted a gap analysis to identify priority areas for the conservation of our focal species. Results showed a distribution pattern driven by temperature and precipitation, and unstable suitable areas by the years 2050 and 2070. Five temperature and precipitation variables (Bio2, Bio4, Bio12, Bio14, and Bio18) were identified as primary contributors to the habitat suitability of the selected Pelargonium species. Our model evaluation demonstrated a strong performance, with an AUC score >0.8, providing robust support for its replicability in monitoring the spatial distribution of other related taxa. We identified key areas for conservation activities in a bid to expand the current known habitats of the species in focus. While we leveraged SDM approach for explaining the area of occupancy and the spatial extent of Pelargonium species across in South Africa, we posit that attention should be drawn to the preservation of the remaining populations of the species and their associated habitats, towards mitigating their extinction.

Garcia, A. L., I. M. S. Bezerra, M. T. Buril, and L. C. Marinho. 2024. First record of the potential bioinvasive species Ipomoea obscura (Convolvulaceae) in South America coast. Journal of Coastal Conservation 29. https://doi.org/10.1007/s11852-024-01088-5

Exotic species are those growing in areas outside their natural distribution and can cause negative impacts on local biodiversity, such as ecological imbalance, competition with native species and changes in ecosystems functioning. Ipomoea obscura (L.) Ker Gawl., native to tropical and subtropical Asia and Africa, and exotic in Australia, Caribbean region and North America, is reported here as the first verified record for South American territory, in the state of Maranhão, Northeast Brazil. This species, known as “Obscure Morning Glory”, has invasive potential and can negatively affect local biodiversity. Recording exotic species in the initial stages of invasion, as well as understanding their biology and taxonomy, is essential for planning strategies to prevent their spread. Here we present a description, comments on phenological period, distribution, taxonomic notes, ecology and uses, as well as photos and illustration.

Biondi, M., M. Iannella, and P. D’Alessandro. 2024. Ecological Profile of the Flea Beetle Genus Calotheca Heyden in South Africa (Chrysomelidae, Galerucinae, Alticini). Insects 15: 994. https://doi.org/10.3390/insects15120994

In this work, the 25 species of the flea beetle genus Calotheca Heyden recorded for South Africa are considered. Starting from the updated species distribution and the topographic, temperature, and precipitation variables, as well as the vegetation types in the occurrence sites, through an analysis of ecological niche modelling, a possible ecological profile is provided, both for each species and the entire genus, highlighting some of the factors that drive their occurrence and distribution patterns. Along with the vegetation type, some climatic variables were found to be particularly influential, such as the mean temperature of both the wettest and driest quarters and also the mean precipitation of the wettest period. Finally, comparing the distribution of the areas of highest suitability returned by the model obtained for Calotheca, they largely overlap with the highest-density areas of Searsia, genus of Anacardiaceae, including the main host plants for these flea beetles.

Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.

Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18

Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.

Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819

Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.

Mokotjomela, T. M., L. R. Vukeya, T. J. Mbele, K. Matsokane, T. Munyai, B. R. Ntloko, and M. P. Monyatsi. 2024. The alien and invasive plant species that may be a future conservation threat to the Lesotho Afro-alpine Drakensberg area. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02326-0

In this study, we documented and compared similarities of the alien plant species richness between South Africa represented by three provinces: Free State (FS), Eastern Cape (EC), and KwaZulu-Natal (KZN), and Lesotho—an important water source area for southern Africa. We tested the prediction that alien plant species in Lesotho are a subset of South Africa’s species partly because of the short geographical distances between the provinces and Lesotho, and environmental similarity. Overall, 7124 records containing 1040 individual alien plant species belonging to 147 families were documented. South Africa had significantly greater alien plant species records than Lesotho. Of 147 plant families, 44 were represented in both countries, and 101 families did not occur in Lesotho. Against the study prediction, the Geraniaceae and Orobanchaceae families occurred in Lesotho but not in three provinces. KwaZulu-Natal had a significantly greater number of species than Lesotho but not the other provinces, and 49% of species in three provinces originated from the Americas (i.e. South and North), Europe, and Asia. A similar pattern was observed in Lesotho. Woody and herbaceous alien plants, habitat transformers, dominated three provinces, while herbaceous species dominated Lesotho. The 62% of 1040 alien species were not listed in the South African national regulations, indicating their negative impacts are also unknown in the study region. Plant nurseries were a dominant species dispersal pathway in South Africa, while home gardens were prominent in Lesotho. We conclude that invasive plant species constitute a future threat to the Lesotho Drakensberg highlands water catchments and recommend prioritising their management and improving cross-border biosecurity between Lesotho and South Africa.

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.