Science Enabled by Specimen Data
Moradi, N., U. Joger, S. Shafiei Bafti, A. Sharifi, and M. E. SehhatiSabet. 2024. Biogeography of the Iranian snakes M. D. Naser [ed.],. PLOS ONE 19: e0309120. https://doi.org/10.1371/journal.pone.0309120
The events of the Cenozoic era such as mountain formation caused Iran to become one of the most amazing biodiversity hotspots in the world today. This pioneering study on Iranian snake biogeography integrates historical and ecological analyses. A phylogeographic review traces speciation and dispersal, while cluster analysis with a new snake checklist assesses faunistic similarities within Iran and its surroundings. Jaccard and Sorenson indices generate similarity dendrograms, Indicator Species Analysis pinpoints regional key species, and Endemism index calculates regional endemism rates, enriching our knowledge of Iran’s species diversity. Phylogeographic analyses identify four biogeographical corridors for snake ingress into Iran: the Arabian region through southwestern Iran, the Western Asian mountainous transition zone via northwestern Iran, the Turanian region into northeastern Iran, and the Indus River Valley into southeastern and eastern Iran. Dendrogram analysis divides snake fauna into three groups. The first group associates western Zagros and Khuzestan fauna with the Sahara and Arabian regions. The second group links Kopet Dagh and Turkmen Steppe fauna with the Turanian region, and Central Plateau and Baluchistan fauna with the Iranian region. The third group connects northwest highlands, Alborz and Zagros mountains, and Caspian Sea coasts with the Western Asian Mountain transition zone. The study validates broad biogeographic patterns via ecoregional associations and indicator species analysis, providing finer resolution. Species like Platyceps najadum in Caspian Hyrcanian mixed forests exemplify ecoregional alignment, while Zagros and Alborz mountains exhibit unique faunal indicators, indicating species-level divergence. Shared indicators among widespread ecoregions reflect habitat continuity; exclusive indicators emphasize regional distinctiveness. Despite endemic species prevalence, they seldom act as significant indicators due to various factors. Our research confirms the Zagros Mountains, Khuzestan Plain, Alborz Mountains, and Persian Gulf coasts as snake diversity hotspots, marked by higher species richness compared to other Iranian regions.
Nekrasova, O., M. Pupins, O. Marushchak, V. Tytar, A. Martinez-Silvestre, A. Škute, A. Čeirāns, et al. 2024. Present and future distribution of the European pond turtle versus seven exotic freshwater turtles, with a focus on Eastern Europe. Scientific Reports 14. https://doi.org/10.1038/s41598-024-71911-4
Freshwater turtles are often used as terrarium pets, especially juveniles of exotic species. At the adult stage they are often released by their owners into the wild despite their high invasion potential. In Europe these thermophilic potentially invasive alien species occupy the habitats of the native European pond turtle Emys orbicularis (Linnaeus, 1758), with new records from the wild being made specifically in Eastern Europe (Latvia and Ukraine) during recent decades. Assessing the potential of alien freshwater turtles to establish in new territories is of great concern for preventing invasion risks while preserving native biodiversity in the present context of climate change. We explored this issue by identifying the present and future (by 2050) suitable habitats of the European pond turtle and several potentially invasive alien species of freshwater turtle already settled in Europe, using a geographic information system (GIS) modelling approach based on datasets from CliMond for climate, Near-global environmental information (NGEI) for freshwater ecosystems (EarthEnv) and Maxent modelling using open-access databases, data from the literature and original field data. Modelling was performed for seven species of alien freshwater turtles occurring from the extreme northern to southern borders of the European range of E. orbicularis : the pond slider Trachemys scripta (Thunberg and Schoepff, 1792), the river cooter Pseudemys concinna (Le Conte, 1830), the Florida red-bellied cooter Pseudemys nelsoni (Carr, 1938), the false map turtle Graptemys pseudogeographica (Gray, 1831), the Chinese softshell turtle Pelodiscus sinensis (Wiegmann, 1835), the Caspian turtle Mauremys caspica (Gmelin, 1774) and the Balkan terrapin Mauremys rivulata (Valenciennes, 1833). In Ukraine, the most Eastern limit of E. orbicularis distribution, were previously reported northern American originated T. scripta , M. rivulata , M. caspica , whereas in Latvia, Emys’ most northern limit, were additionally reported P. concinna , P. nelsoni , G. pseudogeographica and Asia originated P. sinensis . The resulting Species Distribution Models (SDM) were of excellent performance (AUC > 0.8). Of these alien species, the most potentially successful in terms of range expansion throughout Europe were T. scripta (34.3% of potential range expansion), G. pseudogeographica (24.1%), and M. caspica (8.9%) and M. rivulata (4.3%) mainly in Eastern Europe, especially in the south of Ukraine (Odesa, Kherson, Zaporizhzhia regions, and Crimean Peninsula). Correlation between the built SDMs for the native E. orbicularis and the invasive alien T. scripta was reliably high, confirming the highly likely competition between these two species in places they cooccur. Moreover, a Multiple Regression Analysis revealed that by 2050, in most of Europe (from the western countries to Ukraine), the territory overlap between E. orbicularis and potentially invasive alien species of freshwater turtles will increase by 1.2 times, confirming higher competition in the future. Importantly, by 2050, Eastern Europe and Ukraine are predicted to be the areas with most suitable habitats for the European pond turtle yet with most limited overlap with the invasive alien species. We conclude that Eastern Europe and Ukraine are the most relevant priority conservation areas for the European pond turtle where it is now necessary to take protective measures to ensure safe habitat for this native species on the long-term.
Amin, H., and A. Borzée. 2024. Understanding the Distribution, Behavioural Ecology, and Conservation Status of Asian Pelophylax. Diversity 16: 259. https://doi.org/10.3390/d16050259
Understanding species from an ecological and phylogenetic perspective facilitates an understanding of their conservation status in relation to the changing world. The frog genus Pelophylax is among the largest in terms of amphibian biomass in the Palearctic, but species have not been thoroughly studied at the Asian continental scale. The phylogeographic relationship, behavioural ecology, and ecological requirements within the genus need clarification, despite generally good local coverage. Here, for the first time, we conducted a literature review focused on phylogeography and behavioural ecology, supported by ecological niche modelling of twelve Asian Pelophylax lineages. Finally, we compiled the known threats for each of the lineages. We first determined the presence of twelve species and species-candidate lineages. In terms of behavioural ecology, the main difference among lineages is the time to metamorphosis and the time to reach sexual maturity. The ecological models highlighted a match between the known presence of each clade and their suitable habitat and highlighted the Syr Darya drainage on the eastern shore of the Caspian Sea for the non-described Pelophylax “Syr Darya lineage”. Finally, we highlighted the greatest variation among lineages in terms of threats, as some lineages are threatened by numerous factors, whereas others are expanding.
Deomurari, A., A. Sharma, D. Ghose, and R. Singh. 2023. Projected Shifts in Bird Distribution in India under Climate Change. Diversity 15: 404. https://doi.org/10.3390/d15030404
Global climate change is causing unprecedented impacts on biodiversity. In India, there is little information available regarding how climate change affects biodiversity at the taxon/group level, and large-scale ecological analyses have been lacking. In this study, we demonstrated the applicability of eBird and GBIF (Global Biodiversity Information Facility), and produced national-scale forecasts to examine the possible impacts of climate change on terrestrial avifauna in India. Using data collected by citizen scientists, we developed fine-tuned Species Distribution Models (SDMs) and predicted 1091 terrestrial bird species that would be distributed in India by 2070 on two climatic surfaces (RCP 4.5 and 8.5), using Maximum Entropy-based species distribution algorithms. Of the 1091 species modelled, our findings indicate that 66–73% of bird species in India will shift to higher elevations or shift northward, and 58–59% of bird species (RCP 4.5 and 8.5) would lose a portion of their distribution ranges. Furthermore, distribution ranges of 41–40% of bird species would increase. Under both RCP scenarios (RCP 4.5 and 8.5), bird species diversity will significantly increase in regions above 2500 m in elevation. Both RCP scenarios predict extensive changes in the species richness of the western Himalayas, Sikkim, northeast India, and the western Ghats regions by 2070. This study has resulted in novel, high-resolution maps of terrestrial bird species richness across India, and we predict predominantly northward shifts in species ranges, similar to predictions made for avifauna in other regions, such as Europe and the USA.
Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600
Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.
Lorestani, N., M. Hemami, A. Rezvani, and M. Ahmadi. 2022. Ecological niche models reveal divergent habitat use of Pallas’s cat in the Eurasian cold steppes. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9624
Identifying the association between the patterns of niche occupation and phylogenetic relationships among sister clades and assisting conservation planning implications are of the most important applications of species distribution models (SDMs). However, most studies have been carried out regardless of within taxon genetic differentiation and the potential of local adaptation occurring within the species level. The Pallas's cat (Otocolobus manul) is a less‐studied species with unknown biogeography and phylogenetic structure across a widespread yet isolated range from the Caucasus to eastern China. In the current study, by considering a previously proposed genetic structure and based on a cluster analysis on climatic variables, we supposed three clades for this species, including O. m. manul, O. m. ferrugineus, and O. m. nigripectus. We developed SDM for each clade separately and compared it with a general distribution model of the species to determine whether the hypothesized taxonomic resolution affects the predicted ecological niche of the within‐species structures. We assessed the effect of climate change on the future distribution of the species to detect the most sensitive clades to global warming scenarios. Our results showed that for all clades' models, the AUC and TSS were greater than the general model. Access to the preferred prey of the Pallas's cat, that is, pika, had a significant effect on the distribution of O. m. manul and O. m. ferrugineus, whereas the most influential variable affecting O. m. nigripectus habitat suitability was terrain slope. Based on our future projections, we found that future climate change likely threatens the clades O. m. ferrugineus and O. m. nigripectus more than O. m. manul, findings that were hidden in the general model. Our results highlight the proficiency of SDMs in recognizing within‐taxon habitat use of widespread species and the necessity of this procedure for implementing effective conservation planning of these species.
Kaptyonkina, A. G., T. N. Dujsebayeva, K. M. Akhmedenov, V. A. Khromov, V. N. Krainyuk, F. Sarzhanov, S. V. Starikov, et al. 2022. The range of marsh frogs (complex Pelophylax ridibundus, Amphibia, Ranidae) in Kazakhstan: Progressive dispersal or cyclic fluctuations? Proceedings of the Zoological Institute RAS 326: 211–238. https://doi.org/10.31610/trudyzin/2022.326.3.211
According to 2005 data, during the second half of the 20th century, the range of marsh frogs (Pelophylax ridibundus complex) in Kazakhstan almost doubled, which was facilitated by the unintentional introduction of these amphibians in the central and eastern regions of the country against the backdrop of favorable climate change. This paper analyzes the results of the next monitoring of the distribution of the marsh frogs in Kazakhstan in the light of the hypothesis of the ongoing dispersal of amphibians throughout the country. During the revision of literature, museum and archival materials over the past 15 years and the analysis of the authors’ field data for 2021, about 500 amphibian sighting points were collected, which is almost 2 times higher than previously known information. It has been established that the modern range of the complex occupies the territory of all major hydrographic basins of Kazakhstan: The Ural-Emba, Aral-Syrdarya, Nura-Tengiz, Balkhash-Alakol, Tobol-Ishim and Irtysh basins, of which only the last two belong to the area of oceanic runoff, the rest are the drainless inland. A chronological analysis of the data obtained for each basin made it possible to conclude that over the historical period the area of the marsh frogs’ range has changed, but mainly due to periodic reductions or expansions within the drainless inland basins, the level and mineralization of water bodies of which are determined by cyclic climate fluctuations. In a broad sense, it is proposed to talk about the constancy of the autochthonous range of the marsh frogs in the west, south and southeast of Kazakhstan. The phenomenon of “settlement” includes the movements of lake frogs within the Nura-Tengiz and Irtysh basins, where they did not live in the historical past. In geological retrospect, this process probably restores the boundaries of the Neogene distribution of representatives of the P. ridibundus complex. From the point of view of the genetic composition of the complex, one can speak of the dispersal or even expansion of the Anatolian P. cf. bedriagae, which has successfully advanced to all regions of Kazakhstan from the eastern borders of its autochthonous range in the Caspian Plain and the coasts of the Mangyshlak Peninsula.
Ecke, F., M. Magnusson, B. A. Han, and M. Evander. 2022. Orthohantaviruses in the Arctic: Present and Future. Arctic One Health: 393–414. https://doi.org/10.1007/978-3-030-87853-5_18
Orthohantaviruses, family Hantaviridae , are globally distributed except for Antarctica where they are absent. In animals, orthohantaviruses are transmitted horizontally, either directly through aggressive interactions and grooming or by inhaling infectious particles shed from urine, feces, or saliva in the environment. Humans become infected by inhaling aerosols of the virus-contaminated excretions of small mammals. Orthohantaviral infections in humans cause severe hantavirus pulmonary syndrome (HPS) in the North American Artic and hemorrhagic fever with renal syndrome (HFRS) in the Eurasian Arctic. In the Arctic, 16 rodent species (order Rodentia) and five shrew species (order Eulipotyphla) have been identified as reservoirs of orthohantaviruses by RNA detection. The two most important reservoir rodents in the Arctic are the bank vole ( Myodes glareolus ) in Eurasia carrying Puumala orthohantavirus (PUUV) and North American deermouse ( Peromyscus maniculatus ) in the North American Arctic carrying Sin Nombre orthohantavirus (SNV); both rodents being habitat generalists occurring in natural and human-modified habitats. Global warming, either independently or in combination with onshore exploitation of natural resources, is expected to increase the distribution range of reservoirs (including bank vole and North American deermouse, rats ( Rattus rattus and R. norvegicus ), house mouse ( Mus musculus ) and field mice ( Apodemus spp.)), and their associated orthohantaviruses. These changes pose the risk of introducing New World orthohantaviruses (e.g., Jemez Springs virus (JMSV) and SNV) to areas where so far only Old World orthohantaviruses (e.g., Hantaan orthohantavirus (HTNV) and PUUV) occur and vice versa. Climate change in the Arctic will likely also promote transmission and prevalence of orthohantaviruses in their reservoirs and hence increase zoonotic risk. The expected environmental changes call for increased surveillance and preparedness to mitigate potential outbreaks of orthohantavirus diseases in humans.
Nekrasova, O., V. Tytar, M. Pupins, A. Čeirāns, and A. Skute. 2021. GIS Modelling of the Distribution of Terrestrial Tortoise Species: Testudo graeca and Testudo hermanni (Testudines, Testudinidae) of Eastern Europe in the Context of Climate Change. Zoodiversity 55: 387–394. https://doi.org/10.15407/zoo2021.05.387
The study of the distribution of protected animal species in Europe is especially relevant in a changing climate. Therefore, in this work, we tried to solve the problem of the possibility of habitation of tortoises Testudo graeca Linnaeus, 1758 and Testudo hermanni Gmelin, 1789 in Eastern Europe by …
Wahle, A., D. Rödder, D. G. Chapple, S. Meiri, A. Rauhaus, and T. Ziegler. 2021. Skinks in Zoos: A global approach on distribution patterns of threatened Scincidae in zoological institutions. Global Ecology and Conservation 30: e01800. https://doi.org/10.1016/j.gecco.2021.e01800
To manage populations of threatened species according to the IUCN’s One Plan Approach, knowledge about both in situ and ex situ populations is required. To enhance the conservation of threatened skinks and to gain an overview which skink species are kept in zoos, and thus already have an ex situ con…