Science Enabled by Specimen Data

Glos, R. A. E., and M. G. Weber. 2025. Multiple metrics of trichome diversity support independent evolutionary hypotheses in blazingstars (Mentzelia: Loasaceae). Evolution. https://doi.org/10.1093/evolut/qpaf054

Abstract Trichomes are diverse and functionally important plant structures that vary in response to selection pressures across ecological gradients and evolutionary timescales. Classic hypotheses predict higher investment in trichomes in arid environments, at lower latitudes, and in long-lived species, as well as shifts in trichome production to reduce conflict between defense traits and mutualisms. However, tests of these hypotheses often rely on aggregate trichome metrics and neglect the rich diversity of trichome phenotypes. Here, we collected data on fine-scale patterns of trichome length, density, and type in 52 species of blazingstars (Mentzelia: Loasaceae) and tested whether individual trichome traits were consistent with existing adaptive hypotheses. Contrary to longstanding hypotheses, we found that Mentzelia species tend to display greater trichome investment in less arid environments and at higher latitudes. Barbed trichomes are significantly less common on the upper surface of the leaf, possibly reducing defense-pollination conflict. Species with larger petals (a proxy for reliance on insect pollinators) also shift investment away from insect-trapping hairs on the underside of the leaf. Examining trichome types separately revealed that different morphologies show distinct responses to abiotic and biotic factors, demonstrating the need to consider multiple axes of diversity when testing adaptive hypotheses for complex traits.

Pan, Y., C. Fu, C. Tian, H. Zhang, X. Wang, and M. Li. 2025. Unraveling the Impact of Environmental Factors and Evolutionary History on Species Richness Patterns of the Genus Sorbus at Global Level. Plants 14: 338. https://doi.org/10.3390/plants14030338

Understanding the drivers of species richness patterns is a major goal of ecology and evolutionary biology, and the drivers vary across regions and taxa. Here, we assessed the influence of environmental factors and evolutionary history on the pattern of species richness in the genus Sorbus (110 species). We mapped the global species richness pattern of Sorbus at a spatial resolution of 200 × 200 km, using 10,652 specimen records. We used stepwise regression to assess the relationship between 23 environmental predictors and species richness and estimated the diversification rate of Sorbus based on chloroplast genome data. The effects of environmental factors were explained by adjusted R2, and evolutionary factors were inferred based on differences in diversification rates. We found that the species richness of Sorbus was highest in the Hengduan Mountains (HDM), which is probably the center of diversity. Among the selected environmental predictors, the integrated model including all environmental predictors had the largest explanatory power for species richness. The determinants of species richness show regional differences. On the global and continental scale, energy and water availability become the main driving factors. In contrast, climate seasonality is the primary factor in the HDM. The diversification rate results showed no significant differences between HDM and non-HDM, suggesting that evolutionary history may have limited impact on the pattern of Sorbus species richness. We conclude that environmental factors play an important role in shaping the global pattern of Sorbus species richness, while diversification rates have a lesser impact.

Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.

Noel, A., D. R. Schlaepfer, B. J. Butterfield, M. C. Swan, J. Norris, K. Hartwig, M. C. Duniway, and J. B. Bradford. 2024. Most Pinyon–Juniper Woodland Species Distributions Are Projected to Shrink Rather Than Shift Under Climate Change. Rangeland Ecology & Management. https://doi.org/10.1016/j.rama.2024.09.002

Pinyon–juniper (PJ) woodlands are among the most widespread ecosystems in rangelands of western North America, supporting diverse wildlife habitat, recreation, grazing, and cultural/spiritual enrichment. Anticipating future distribution shifts under changing climate will be critical to climate adaptation and conservation efforts in these ecosystems. Here, we evaluate drivers of PJ tree species’ distributions and project changes in response to future climate change. We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.

Xu, L., Z. Song, T. Li, Z. Jin, B. Zhang, S. Du, S. Liao, et al. 2024. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). Plant Diversity. https://doi.org/10.1016/j.pld.2024.10.003

Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.

Singhal, S., C. DiVittorio, C. Jones, I. Ixta, A. Widmann, I. Giffard‐Mena, F. Zapata, and A. Roddy. 2024. Population structure and natural selection across a flower color polymorphism in the desert plant Encelia farinosa. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16413

AbstractPremiseClines—or the geographic sorting of phenotypes across continual space—provide an opportunity to understand the interaction of dispersal, selection, and history in structuring polymorphisms.MethodsIn this study, we combine field‐sampling, genetics, climatic analyses, and machine learning to understand a flower color polymorphism in the wide‐ranging desert annual Encelia farinosa.ResultsWe find evidence for replicated transitions in disk floret color from brown to yellow across spatial scales, with the most prominent cline stretching ~100 km from southwestern United States into México. Because population structure across the cline is minimal, selection is more likely than drift to have an important role in determining cline width.ConclusionsGiven that the cline aligns with a climatic transition but there is no evidence for pollinator preference for flower color, we hypothesize that floret color likely varies as a function of climatic conditions.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Wei, Z., D. Jiao, C. A. Wehenkel, X. Wei, and X. Wang. 2024. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.13760

Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth‐largest conifer genus, is a keystone component of the boreal and temperate dark‐coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high‐latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.

Hillman, A., and S. E. Nielsen. 2024. Climate refugia along Lake Superior’s shores: disjunct arctic–alpine plants rely on cool shoreline temperatures but are restricted to highly exposed habitat under climate warming C. Mulder [ed.],. Journal of Plant Ecology 17. https://doi.org/10.1093/jpe/rtae050

Climate refugia can serve as a remnant habitat or stepping stones for species dispersal under climate warming. The largest freshwater lake by surface area, Lake Superior, USA and Canada, serves as a model system for understanding cooling-mediated local refugia, as its cool water temperatures and wave action have maintained shoreline habitats suitable for southern disjunct populations of arctic–alpine plants since deglaciation. Here, we seek to explain spatial patterns and environmental drivers of arctic–alpine plant refugia along Lake Superior’s shores, and assess future risk to refugia under moderate (+3.5 °C) and warmest (+5.7 °C) climate warming scenarios. First, we examined how the interactive effects of summer surface water temperatures and wind affected onshore temperatures, resulting in areas of cooler refugia. Second, we developed an ecological niche model for the presence of disjunct arctic–alpine refugia (pooling 1253 occurrences from 58 species) along the lake’s shoreline. Third, we fit species distribution models for 20 of the most common arctic–alpine disjunct species and predicted presence to identify refugia hotspots. Finally, we used the two climate warming scenarios to predict changes in the presence of refugia and disjunct hotspots. Bedrock type, elevation above water, inland distance, July land surface temperature from MODIS/Terra satellite and near-shore depth of water were the best predictors of disjunct occurrences. Overall, we predicted 2236 km of the shoreline (51%) as disjunct refugia habitat for at least one species under current conditions, but this was reduced to 20% and 7% with moderate (894 km) and warmest (313 km) climate change projections.

Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614

The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.