Science Enabled by Specimen Data

Clement, R. A., Saxton, N. A., Standring, S., Arnold, P. R., Johnson, K. K., Bybee, D. R., & Bybee, S. M. (2021). Phylogeny, migration and geographic range size evolution of Anax dragonflies (Anisoptera: Aeshnidae). Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlab046 https://doi.org/10.1093/zoolinnean/zlab046

The genus Anax is a group of cosmopolitan dragonflies noted for its conspicuous migratory behaviours and large size. Here we present the first dated, species-level, multigene, molecular phylogeny for the group to test generic and species-limits, as well as the evolution of migration and range size. …

Moore, M. P., Hersch, K., Sricharoen, C., Lee, S., Reice, C., Rice, P., … Fowler-Finn, K. D. (2021). Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proceedings of the National Academy of Sciences, 118(28), e2101458118. doi:10.1073/pnas.2101458118 https://doi.org/10.1073/pnas.2101458118

Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic condi…

Tabor, J. A., & Koch, J. B. (2021). Ensemble Models Predict Invasive Bee Habitat Suitability Will Expand under Future Climate Scenarios in Hawai’i. Insects, 12(5), 443. doi:10.3390/insects12050443 https://doi.org/10.3390/insects12050443

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resou…

Ji, Y. (2021). The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie. doi:10.1007/s13592-020-00826-6 https://doi.org/10.1007/s13592-020-00826-6

An understanding of the origin and formation of biodiversity and distribution patterns can provide a theoretical foundation for biodiversity conservation. In this study, phylogeny and biogeography analyses based on mitochondrial genomes and niche modeling based on occurrence records were performed t…

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. doi:10.1016/j.cub.2020.10.053 https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…

Medina, A. M., & Almeida-Neto, M. (2020). Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution. Sociobiology, 67(2), 239. doi:10.13102/sociobiology.v67i2.4901 https://doi.org/10.13102/sociobiology.v67i2.4901

The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species’ climatic niches remain stable in their exo…

Liu, X., Blackburn, T. M., Song, T., Wang, X., Huang, C., & Li, Y. (2020). Animal invaders threaten protected areas worldwide. Nature Communications, 11(1). doi:10.1038/s41467-020-16719-2 https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Zigler, K., Niemiller, M., Stephen, C., Ayala, B., Milne, M., Gladstone, N., … Cressler, A. (2020). Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies, 82(2), 125–167. doi:10.4311/2019lsc0125 https://doi.org/10.4311/2019LSC0125

We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…