Science Enabled by Specimen Data
Arango-Lozano, J., F. A. Toro-Cardona, J. S. O. Montilla, and H. E. Ramírez-Chaves. 2025. Ecological Forecasting for Night Monkeys in the Aotus lemurinus Complex: Climate-driven Threats to Habitat Suitability. International Journal of Primatology. https://doi.org/10.1007/s10764-024-00481-z
Climate change poses threats to global biodiversity, particularly in groups such as American primates, which are restricted to forested ecosystems. Assessing species-specific and habitat vulnerabilities is crucial to understand how climate change impacts this group. We investigated the impact of climate change and habitat vulnerability for the three species of night monkeys in the Aotus lemurinus complex ( A. grisemembra, A. lemurinus , and A. zonalis ), a group of American primates which is highly vulnerable to environmental disturbance. Using ecological niche modeling, we projected how different climate scenarios could alter the distribution of the three species, and calculated a vulnerability transformation index for quantifying susceptibility of natural habitats to conversion into anthropogenic land covers. Our findings reveal that the currently most favourable habitats for all species will reduce, with A. griseimembra experiencing the greatest declines, particularly in lowland areas. A. lemurinus shows relatively smaller habitat losses overall, with the greatest reduction in Ecuador. A. zonalis is the least-affected species, but still faces some level of risk. The results emphasize the need for detailed ecological assessments in biogeographically important regions, particularly areas projected to maintain habitat stability under future climate scenarios. Targeted research should focus on identifying species-specific responses to habitat changes in order to refine conservation strategies for night monkeys. These findings provide actionable insights for prioritizing highland forest restoration, implementing mitigation measures for habitat loss driven by human activities and climate change, and enhancing monitoring in underexplored regions.
Belotti López de Medina, C. R. 2024. Diet breadth and biodiversity in the pre-hispanic South-Central Andes (Western South America) during the Holocene: An exploratory analysis and review. The Holocene. https://doi.org/10.1177/09596836241231446
This paper presents an exploratory study on the taxonomic diversity of pre-Hispanic archaeofaunas in the South-Central Andes (SCA; western South America) from the Pleistocene-Holocene boundary to the Late-Holocene. The SCA is a complex of diverse environments and has undergone distinct climate events for the last 13,000 years, such as the occurrence of warmer and drier conditions in the Middle-Holocene. The South-Central Andean area was part of the larger Andes interaction area, which was a primary center for animal and plant domestication and the emergence of agro-pastoralist economies. Since subsistence was key to these processes, the SCA provides a relevant case study on the interactions among environment, foodways and sociocultural evolution. Taxonomic diversity was used here as a proxy for diet breadth. A total of 268 archaeofaunal assemblages were sampled from the zooarchaeological literature. Reviewed variables included the cultural chronology and spatial coordinates of the assemblages, as well as the presence and abundance of taxa at the family rank. Taxonomic diversity covered two dimensions: composition (families present in each assemblage) and structure (quantitative relationships among taxa), which was measured through richness (NTAXA), ubiquity and relative abundance (NISP based rank-order). Despite the uneven distribution of samples, the analyses revealed the following trends: (1) a moderate relationship between NTAXA and distance from coastline for most of the Holocene; (2) a potential decrease in assemblage richness for coastal ecoregions during the Late-Holocene; and (3) a generalized increase in the relative abundance of Camelidae.
Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research. https://doi.org/10.1007/s43388-023-00143-3
The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.
Vázquez-Rueda, E., A. P. Cuervo-Robayo, and J. Ayala-Berdon. 2023. Forest dependency could be more important than dispersal capacity for habitat connectivity of four species of insectivorous bats inhabiting a highly anthropized region in central Mexico. Mammal Research. https://doi.org/10.1007/s13364-023-00707-0
The maintenance, restoration, and improvement of habitat structure are critical for biodiversity conservation. Under this context, studies assessing habitat connectivity become essential, especially those focused on anthropized regions holding high species richness. We calculated the habitat connectivity of four species of insectivorous bats with different dispersal capacity and habitat preferences in a highly anthropized region in central Mexico, Idionycteris phyllotis and Myotis thysanodes , with a high dispersal capacity and forest-dependency, and Eptesicus fuscus with a low dispersal capacity, and Tadarida brasiliensis with a high dispersal capacity, as the more tolerant bat species to anthropogenic disturbance. We developed niche-based species distribution models to identify suitable habitat patches for each species. We then assessed habitat connectivity and the importance of suitable habitat patches for maintaining connectivity using a graph theory approach. Our results showed that forest dependency was most important than dispersal capacity for connectivity. We also found that the Iztaccíhuatl-Popocatépetl mountain, a National Park comprising 4.2% of natural vegetation in the study area, was the most critical patch for maintaining connectivity for most of the study species. Our study demonstrates the importance of conserving the remnants of natural vegetation for maintaining habitat connectivity within a fragmented landscape and demonstrates the importance of conserving protected areas as well as other remnants of vegetation for the maintenance of habitat connectivity within a fragmented landscape.
Agostini, I., S. J. E. Velazco, J. A. Insaurralde, R. Pavé, I. Holzmann, E. Fernández-Duque, M. P. Tujague, et al. 2022. Prioritizing Areas for Primate Conservation in Argentina. Diversity 14: 982. https://doi.org/10.3390/d14110982
Argentina lies within the southernmost distributional range of five neotropical primates, the brown howler monkey Alouatta guariba, the black-and-gold howler monkey Alouatta caraya, the black-horned capuchin Sapajus nigritus, the Azara’s capuchin Sapajus cay, and the Azara’s owl monkey Aotus azarae; the first three of which are globally threatened. These species occupy different ecoregions: the Alto Paraná Atlantic forest, the Araucaria moist forest, the humid Chaco, the Southern Cone Mesopotamian savanna, the Paraná Ffooded savanna, and the Southern Andean Yungas. The recently approved National Primate Conservation Plan of Argentina calls for identifying priority areas to focus conservation actions for these species. We used species distribution models to estimate species ranges and then used the Zonation software to perform a spatial conservation prioritization analysis based on primate habitat quality and connectivity to identify potential areas of importance at national and ecoregional levels. Only 7.2% (19,500 km2) of the area inhabited by primates in Argentina is under protection. Outside the current protected areas, the top-ranked 1% and 5% priority areas identified in our analysis covered 1894 and 7574 km2, respectively. The top 1% areas were in the Atlantic forest of Misiones province, where S. nigritus, A. guariba, and A. caraya are distributed, and in the humid portion of eastern Chaco and Formosa provinces, where A. azarae and A. caraya are present. The top 5% areas included portions of the Yungas, where S. cay is the only primate present. Priority areas in Chaco and Formosa provinces are particularly relevant because of the paucity of protected areas and the high deforestation rate. The endangered A. guariba population will benefit from the better protection of the priority areas of Misiones. The potential priority areas proposed herein, considered within a context of a broad participatory process involving relevant stakeholders and local people, will help guide new and innovative conservation policies and practices while supporting management objectives.
Lima‐Rezende, C. A., G. S. Cabanne, A. V. Rocha, M. Carboni, R. M. Zink, and R. Caparroz. 2022. A comparative phylogenomic analysis of birds reveals heterogeneous differentiation processes among Neotropical savannas. Molecular Ecology 31: 3451–3467. https://doi.org/10.1111/mec.16487
The main objective of this study is to evaluate biogeographic hypotheses of diversification and connection between isolated savannas north (Amazonian savannas) and south (Cerrado core) of the Amazon River. To achieve our goal, we employed genomic markers (genotyping‐by‐sequencing) to evaluate the genetic structure, population phylogenetic relationships, and historical range shifts of four Neotropical passerines with peri‐Atlantic distributions: the Narrow‐billed Woodcreeper (Lepidocolaptes angustirostris), the Plain‐crested Elaenia (Elaenia cristata), the Grassland Sparrow (Ammodramus humeralis), and the White‐banded Tanager (Neothraupis fasciata). The population genetic analyses indicated that landscape (e.g., geographic distance, landscape resistance, and percentage of tree cover) and climate metrics explained divergence among populations in most species, but without indicating a differential role between current and historical factors. Our results did not fully support the hypothesis that isolated populations at Amazonian savannas have been recently derived from the Cerrado core domain. Intraspecific phylogenies and gene flow analyses supported multiple routes of connection between the Cerrado and Amazonian savannas, rejecting the hypothesis that the Atlantic corridor explains the peri‐Atlantic distribution. Our results reveal that the biogeographic history of the region is complex and cannot be explained by simple vicariant models.
Prieto-Torres, D. A., L. E. Nuñez Rosas, D. Remolina Figueroa, and M. del C. Arizmendi. 2021. Most Mexican hummingbirds lose under climate and land-use change: Long-term conservation implications. Perspectives in Ecology and Conservation 19: 487–499. https://doi.org/10.1016/j.pecon.2021.07.001
Hummingbirds are one of the most threatened bird groups in the world. However, the extent to which global climate change (GCC) and habitat loss compromise their conservation status remains unclear. Herein, we proposed to: (1) assess how predicted GCC impacts the distribution of non-migrant hummingbi…
Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032
During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …
Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025
Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…
Hazzi, N. A., J. S. Moreno, C. Ortiz-Movliav, and R. D. Palacio. 2018. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences 115: 7985–7990. https://doi.org/10.1073/pnas.1803908115
Understanding the spatial and temporal evolution of biota in the tropical Andes is a major challenge, given the region’s topographic complexity and high beta diversity. We used a network approach to find biogeographic regions (bioregions) based on high-resolution species distribution models for 151 …