Science Enabled by Specimen Data

de Pedro, D., F. S. Ceccarelli, R. Vandame, J. Mérida, and P. Sagot. 2023. Congruence between species richness and phylogenetic diversity in North America for the bee genus Diadasia (Hymenoptera: Apidae). Biodiversity and Conservation.

The current ecological crisis stemming from the loss of biodiversity and associated ecosystem services, highlights the urgency of documenting diversity and distribution. Bees are a classical example of an ecologically and economically important group, due to their high diversity and varied ecosystem services, especially pollination. Here, two common biodiversity indices, namely species richness and phylogenetic diversity, are evaluated geographically to determine the best approach for selecting areas of conservation priority. The model organisms used in this study are the North American species belonging to the bee genus Diadasia (Apidae). Based on the results obtained by analyzing distributional records and a molecular phylogeny, we can see that species richness and phylogenetic diversity are closely linked, although phylogenetic diversity provides a more detailed assessment of the spatial distribution of diversity. Therefore, while either one of these commonly used indices are valid as far as selecting areas of conservation priority, we recommend, if possible, to include genetic information in biodiversity and conservation studies.

Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721.

The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.

Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881.

Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.

Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin.

Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society.

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Medzihorský, V., J. Trombik, R. Mally, M. Turčáni, and A. M. Liebhold. 2023. Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography.

Aim Many invasive plant species benefit from enemy release resulting from the absence of insect herbivores in their invaded range. However, over time, specialized herbivores may ‘catch up’ with such invasive plants. Black locust is a tree species with a relatively limited native range in North America but has invaded large areas in virtually every temperate continent including North America. We hypothesize that both intra- and intercontinental spread of black locust leads to a parallel, though delayed pattern of intra- and intercontinental spread of insect herbivores. Location Global. Taxon Black locust, Robinia pseudoacacia, and its insect herbivores. Methods We compiled historical records of the occurrence of insect herbivore species associated with R. pseudoacacia from all world regions. Based on this list, we describe taxonomic patterns and investigate associations between environmental features and numbers of non-native specialist herbivores in the portion of North America invaded by R. pseudoacacia. Results A total of 454 herbivorous species are recorded feeding on R. pseudoacacia across the world, with 23 of these being specialized on Robinia. From this group, seven species have successfully expanded their range beyond North America. Within North America, the richness of specialists is explained by a combination of road density, R. pseudoacacia density, distance from the R. pseudoacacia native range, and climate. Main Conclusion Non-native herbivore species have accumulated on invasive R. pseudoacacia in both North America and in other continents. The steady build-up of invasions likely has diminished the enemy release that this invasive tree species has benefited from – a trend that will likely continue in the future. These findings support the hypothesis that invasive plants promote parallel though delayed invasions of specialist insect herbivores.

Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography.

Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at Fifty individual datasets are also available at, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Pelletier, D., and J. R. K. Forrest. 2022. Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae). Ecological Entomology.

Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host‐plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).Several studies have shown greater interannual variation in flowering phenology for earlier‐flowering plants than later‐flowering plants, suggesting that early‐season bees may experience substantial year‐to‐year variation in the floral taxa available to them.It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.

Christman, M. E., L. R. Spears, J. B. U. Koch, T.-T. T. Lindsay, J. P. Strange, C. L. Barnes, and R. A. Ramirez. 2022. Captive Rearing Success and Critical Thermal Maxima of Bombus griseocollis (Hymenoptera: Apidae): A Candidate for Commercialization? J. Brunet [ed.],. Journal of Insect Science 22.

Abstract Commercialized bumble bees (Bombus) are primary pollinators of several crops within open field and greenhouse settings. However, the common eastern bumble bee (Bombus impatiens Cresson, 1863) is the only species widely available for purchase in North America. As an eastern species, concerns have been expressed over their transportation outside of their native range. Therefore, there is a need to identify regionally appropriate candidates for commercial crop pollination services, especially in the western U.S.A. In this study, we evaluated the commercialization potential of brown-belted bumble bees (Bombus griseocollis De Geer, 1773), a broadly distributed species throughout the U.S.A., by assessing nest initiation and establishment rates of colonies produced from wild-caught gynes, creating a timeline of colony development, and identifying lab-reared workers’ critical thermal maxima (CTMax) and lethal temperature (ecological death). From 2019 to 2021, 70.6% of the wild-caught B. griseocollis gynes produced brood in a laboratory setting. Of these successfully initiated nests, 74.8% successfully established a nest (produced a worker), providing guidance for future rearing efforts. Additionally, lab-reared workers produced from wild-caught B. griseocollis gynes had an average CTMax of 43.5°C and an average lethal temperature of 46.4°C, suggesting B. griseocollis can withstand temperatures well above those commonly found in open field and greenhouse settings. Overall, B. griseocollis should continue to be evaluated for commercial purposes throughout the U.S.A.