Science Enabled by Specimen Data

Cona, M., A. Chávez, P. León-Lobos, J. C. Marín, and P. Hinrichsen. 2023. Genetic structure and north-south decrease of genetic diversity in the Patagonian maqui berry (Aristotelia chilensis [Molina] Stuntz): implications for its conservation and use. Conservation Genetics 24: 693–705.

Maqui ( Aristotelia chilensis ) is a small tree endemic to Patagonia. It is currently being actively domesticated for its edible berries, which have high polyphenol content and anti-oxidant capability. However, little is known about its population structure and evolutionary history, information which is useful for the design of effective conservation and domestication strategies. Based on information from other species, we hypothesize that genetic diversity in maqui is higher in northern population and decrease to the South, associated with past migration patterns and as a result has well-structured populations. To explore the genetic diversity of 14 populations (183 samples) of this species, that represent the geographic distribution of the species in Chile we used 13 polymorphic microsatellite markers. Clusters based on Bayesian genetic and spatial structure analyses were used to reconstruct patterns of phylogeographic and demographic history. We found that maqui populations are well-structured, with a substantial reduction of genetic diversity from north to south. The lowest diversity was found in areas that were once covered by ice during the quaternary glaciation. In conclusion, three main genetic groups were revealed by Structure analysis, and genetic diversity reduction from its northern limit in central Chile to the Patagonian region was found, suggesting that an active recolonization process took place during the last few millennia following the last glacial period. These results will help to define accessions from different regions and contribute to support conservation and domestication initiatives.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany.

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Freire-Fierro, A., F. Forest, D. S. Devey, J. F. B. Pastore, J. W. Horn, X.-J. Ge, Z. Wang, et al. 2023. Monnina (Polygalaceae), a New World monophyletic genus full of contrasts. Botanical Journal of the Linnean Society.

Endemic to the Neotropics, Monnina is the second largest genus of Polygalaceae, yet little is known about its phylogenetic history, biogeography, and morphological character evolution. To address these knowledge gaps, we conducted Bayesian and maximum likelihood (ML) analyses of nuclear ITS and plastid trnL–F regions to test the monophyly of Monnina s.l. We used this phylogenetic framework to (i) infer divergence time estimates of lineages within the genus and reconstruct their historical biogeography; (ii) reconstruct the evolution of morphological characters of putative ecological and evolutionary importance in Monnina; and (iii) test for correlations between our phylogenetic hypothesis and environmental data. Our results reveal that Monnina is monophyletic with an indehiscent, 1–2-seeded fruit as a synapomorphy for the genus. We identify six clades within Monnina based on our combined phylogenetic results: Clades A, B, and D are primarily distributed in southern and eastern South America, Clades C and E are primarily Central Andean, and Clade F is chiefly distributed in the Northern Andes and Central America. The ancestor of the Monnina stem lineage dispersed from Australia/Africa to South America during the late Eocene to early Oligocene. The divergences of major lineages within the genus began in the early Miocene. We inferred the most recent common ancestor of Monnina to be an herbaceous plant with one-seeded samaroid fruits. The origins of fleshy fruits and shrubby habits are phylogenetically correlated within Monnina, and their concerted convergent evolution may have promoted increased net diversification rates in the two most species-rich subclades of the genus.

Tataridas, A., M. Moreira, L. Frazão, P. Kanatas, N. Ota, and I. Travlos. 2023. Biology of Invasive Plants 5. Solanum elaeagnifolium Cav. Invasive Plant Science and Management: 1–53.

(no abstract available)

Delfino, H. C., O. Aldana-Ardila, C. E. Fedrizzi, and C. J. Carlos. 2023. Multisource data reveals relevant trends in a Chilean Flamingo Phoenicopterus chilensis population at an important coastal wetland of Southern Brazil: implications for conservation and planning. Journal of Coastal Conservation 27.

The Lagoa do Peixe National Park is one of the most important wetlands in southern Brazil, serving as a contranuptial or breeding site for several species of birds, including the Chilean Flamingo. Despite being the only area where Chilean Flamingo can be seen all year round, the population dynamics of the species in the area is still poorly known. To fill this gap, we reunite populational data from three different sources: literature, fieldwork census, and citizen science data. We use Generalized Additive Models (GAMs) to detect population trends over the years and within the years. The most significant models reveal that the number of Chilean Flamingos in the park decreased from the 1970s until the early 2000s, stabilizing after 2010. During the year, the dynamic of Chilean Flamingo match the dynamics of other contranuptial colonies, with an increase in individuals during winter and early spring and a reduced number from December to May. We discuss how these trends can reflect general populational trends for the species across its distribution, but also changes in the conservation and management administration in the park. We also discuss how the demographic knowledge of Chilean Flamingos in the area can be affected by ongoing activities at Lagoa do Peixe, mainly the artificial opening of the lagoon, shrimp farming, fishing, and tourism, recommending further actions that consider the flamingos in the park and maintain a healthy relationship between human activities and bird conservation.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society.

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261.

Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Roberts, J., and S. Florentine. 2022. Biology, distribution and management of the globally invasive weed Solanum elaeagnifolium Cav (silverleaf nightshade): A global review of current and future management challenges. Weed Research.

Solanum elaeagnifolium Cav (silverleaf nightshade) is a deep-rooted, multi-stemmed, perennial, herbaceous woody plant that has been observed to threaten agricultural and native biodiversity worldwide. It is widely agreed that without efficient integrated management, S. elaeagnifolium will continue to cause significant economic and environmental damage across multiple scales. It is estimated that the annual economic impact of S. elaeagnifolium in Australia exceeds AUD $62 million, with this figure likely to be much higher in other countries invaded by this plant. It can also tolerate a high level of abiotic stress and survive in a range of temperatures (below freezing point to 34°C) and areas with an average yearly rainfall between 250 and 600 mm. Its extensive deep taproot system is capable of regenerating asexually and with its many seed dispersal mechanisms; it can quickly spread and establish itself within a region. This makes containment and management of the species especially challenging. Previous management has largely been focused on biological control, competition, essential oils, grazing pressure, herbicide application and manual removal. Despite the large range of available management techniques, there has been little success in the long-term control of S. elaeagnifolium, and only a handful of methods such as essential oils and herbicide application have shown reasonable success for controlling this weed. Therefore, this review aims to synthesise the identified and potentially useful approaches to control S. elaeagnifolium that have been recorded in the literature which deal with its biology, distribution and management. It also explores previous and current management techniques to ascertain the research gaps and knowledge required to assist in the effective and economically sustainable management of this invasive weed.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224.

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.