Science Enabled by Specimen Data

Qu, J., Xu, Y., Cui, Y., Wu, S., Wang, L., Liu, X., … Wang, X. (2021). MODB: a comprehensive mitochondrial genome database for Mollusca. Database, 2021. doi:10.1093/database/baab056 https://doi.org/10.1093/database/baab056

Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…

Arfianti, T., & Costello, M. J. (2021). The distribution of benthic amphipod crustaceans in Indonesian seas. PeerJ, 9, e12054. doi:10.7717/peerj.12054 https://doi.org/10.7717/peerj.12054

Amphipod crustaceans are an essential component of tropical marine biodiversity. However, their distribution and biogeography have not been analysed in one of the world’s largest tropical countries nested in the Coral Triangle, Indonesia. We collected and identified amphipod crustaceans from eight s…

De Oliveira, M. H. V., Torke, B. M., & Almeida, T. E. (2021). An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia. doi:10.1007/s12228-021-09668-7 https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Brandt, A. J., Bellingham, P. J., Duncan, R. P., Etherington, T. R., Fridley, J. D., Howell, C. J., … Peltzer, D. A. (2020). Naturalised plants transform the composition and function of the New Zealand flora. Biological Invasions. doi:10.1007/s10530-020-02393-4 https://doi.org/10.1007/s10530-020-02393-4

The New Zealand flora has a high proportion of endemic species but has been invaded by almost the same number of non-native plant species. To support management of invasive plant species, we provide an updated inventory of New Zealand’s naturalised flora and compare it with the native flora to ident…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Arfianti, T., & Costello, M. (2020). Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity. Marine Ecology Progress Series, 638, 83–94. doi:10.3354/meps13272 https://doi.org/10.3354/meps13272

Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemici…

Rotenberry, J. T., & Balasubramaniam, P. (2020). Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography. doi:10.1111/ecog.04871 https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Menegotto, A., Rangel, T. F., Schrader, J., Weigelt, P., & Kreft, H. (2019). A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography. doi:10.1111/geb.13032 https://doi.org/10.1111/geb.13032

Aim: The decreasing capacity of area to predict species richness on small islands (the small‐island effect; SIE) seems to be one of the few exceptions of the species–area relationship. While most studies have focused on how to detect the SIE, the underlying ecological factors determining this patter…

Liu, X., Blackburn, T. M., Song, T., Li, X., Huang, C., & Li, Y. (2019). Risks of Biological Invasion on the Belt and Road. Current Biology, 29(3), 499–505.e4. doi:10.1016/j.cub.2018.12.036 https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…