Science Enabled by Specimen Data

Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461. https://doi.org/10.1016/j.biocontrol.2024.105461

Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Weiss, R. M., F. Zanetti, B. Alberghini, D. Puttick, M. A. Vankosky, A. Monti, and C. Eynck. 2024. Bioclimatic analysis of potential worldwide production of spring‐type camelina [Camelina sativa (L.) Crantz] seeded in the spring. GCB Bioenergy 16. https://doi.org/10.1111/gcbb.13126

Camelina [Camelina sativa (L.) Crantz] is a Brassicaceae oilseed that is gaining interest worldwide as low‐maintenance crop for diverse biobased applications. One of the most important factors determining its productivity is climate. We conducted a bioclimate analysis in order to analyze the relationship between climatic factors and the productivity of spring‐type camelina seeded in the spring, and to identify regions of the world with potential for camelina in this scenario. Using the modelling tool CLIMEX, a bioclimatic model was developed for spring‐seeded spring‐type camelina to match distribution, reported seed yields and phenology records in North America. Distribution, yield, and phenology data from outside of North America were used as independent datasets for model validation and demonstrated that model projections agreed with published distribution records, reported spring‐seeded camelina yields, and closely predicted crop phenology in Europe, South America, and Asia. Sensitivity analysis, used to quantify the response of camelina to changes in precipitation and temperature, indicated that crop performance was more sensitive to moisture than temperature index parameters, suggesting that the yield potential of spring‐seeded camelina may be more strongly impacted by water‐limited conditions than by high temperatures. Incremental climate scenarios also revealed that spring‐seeded camelina production will exhibit yield shifts at the continental scale as temperature and precipitation deviate from current conditions. Yield data were compared with indices of climatic suitability to provide estimates of potential worldwide camelina productivity. This information was used to identify new areas where spring‐seeded camelina could be grown and areas that may permit expanded production, including eastern Europe, China, eastern Russia, Australia and New Zealand. Our model is the first to have taken a systematic approach to determine suitable regions for potential worldwide production of spring‐seeded camelina.

Angulo, J. C., J. M. Burke, and F. A. Michelangeli. 2023. Characterizing the frequency, morphological gradient, and distribution of dioecy in Miconia (Melastomataceae). International Journal of Plant Sciences. https://doi.org/10.1086/729063

Dioecy has evolved many times independently within the angiosperms. The distribution, frequency of occurrence, and floral morphology of dioecious angiosperms constitute the foundations for comparative studies of dioecy, yet for many groups they are still poorly characterized. We assessed species of Miconia for the presence of dioecious reproductive system, characterized the floral morphology for staminate and pistillate flowers, and used herbarium records to analyze patterns of distribution and elevational range. We find that dioecious Miconia represent an uncommon case of mismatched stage of organ abortion between staminate and pistillate flowers, with functionally pistillate flower morphology largely consistent across species, and morphological expression in functionally staminate flowers varying from near absent to slight reductions in gynoecia. We identify 58 dioecious species and 15 putatively dioecious species within Miconia that are distributed primarily in montane habitats between 1000 m – 3500 m in the Andes, parts of Central America, and the Caribbean. Our results double the last known count of dioecy in Miconia and highlight the gradient of vestigial morphology in staminate flowers. Lastly, we provide discussion on the significance of dioecy in relation to floral development, pollination, and ecology in Miconia.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Aguirre-Dugua, X., and A. Casas. 2023. Mesoamerica in a Bowl. Current Anthropology 64: 528–549. https://doi.org/10.1086/727484

Trees of the Neotropical genus Crescentia produce hard-shelled fruits used to manufacture bowls. In this work we analyze the role played by these vessels in the material culture of Mesoamerican peoples through archaeological, ethnohistorical (including 19 works and three tribute lists), and linguistic evidence (including 40 native languages). The earliest archaeobotanical record of Crescentia was found in Belize, estimated at least 2400 BP, whereas the first European description was made by Fernández de Oviedo in 1526. Historical texts written from the sixteenth to the nineteenth centuries tell that the main use of these vessels was as drinking cups (especially for cacao). Current ethnographic evidence reveals the validity of a close association between Crescentia bowls and traditional beverages based on cacao. Terms for designating these trees in 29 indigenous languages from eight linguistic families, with the oldest ones from the Amuzgo-Mixtec and Mixe-Zoquean lineages, confirm that Crescentia vessels constitute an entity clearly distinguishable from Lagenaria. New areas of ethnobotanical, ethnographic, and archaeological research are highlighted for understanding the role played by these vessels in utilitarian and symbolic aspects and the factors that support their persistence among Mesoamerican peoples up to the present.

Yim, C., E. S. Bellis, V. L. DeLeo, D. Gamba, R. Muscarella, and J. R. Lasky. 2023. Climate biogeography of Arabidopsis thaliana: Linking distribution models and individual variation. Journal of Biogeography. https://doi.org/10.1111/jbi.14737

Aim Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range‐wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity.LocationGlobal.TaxonArabidopsis thaliana (‘Arabidopsis’).MethodsWe fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current and future climates. We confronted model predictions with individual performance measured on 2194 herbarium specimens, and we asked whether predicted suitability was associated with life history and genomic variation measured on ~900 natural accessions.ResultsThe most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate‐associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late‐flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the centre of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well‐predicted by our native‐range model applied to certain regions but not others, suggesting it has colonized novel climates.Main ConclusionsIntegration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189. https://doi.org/10.3897/neobiota.87.101104

Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.