Science Enabled by Specimen Data

De Oliveira, M. H. V., Torke, B. M., & Almeida, T. E. (2021). An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia. doi:10.1007/s12228-021-09668-7 https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Magri, D., Parra, I., Di Rita, F., Ni, J., Shichi, K., & Worth, J. R. P. (2020). Linking worldwide past and present conifer vulnerability. Quaternary Science Reviews, 250, 106640. doi:10.1016/j.quascirev.2020.106640 https://doi.org/10.1016/j.quascirev.2020.106640

Inventories of species recently extinct or threatened with extinction may be found in global databases. However, despite the large number of published fossil based-studies, specific databases on the vulnerability of species in the past are not available. We compiled a worldwide database of published…

Brandt, A. J., Bellingham, P. J., Duncan, R. P., Etherington, T. R., Fridley, J. D., Howell, C. J., … Peltzer, D. A. (2020). Naturalised plants transform the composition and function of the New Zealand flora. Biological Invasions. doi:10.1007/s10530-020-02393-4 https://doi.org/10.1007/s10530-020-02393-4

The New Zealand flora has a high proportion of endemic species but has been invaded by almost the same number of non-native plant species. To support management of invasive plant species, we provide an updated inventory of New Zealand’s naturalised flora and compare it with the native flora to ident…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Bazzicalupo, A. L., Whitton, J., & Berbee, M. L. (2019). Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. doi:10.1111/jbi.13617 https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

Chase, B. M., Boom, A., Carr, A. S., Chevalier, M., Quick, L. J., Verboom, G. A., & Reimer, P. J. (2019). Extreme hydroclimate response gradients within the western Cape Floristic region of South Africa since the Last Glacial Maximum. Quaternary Science Reviews, 219, 297–307. doi:10.1016/j.quascirev.2019.07.006 https://doi.org/10.1016/j.quascirev.2019.07.006

The Cape Floristic Region (CFR) is one of the world's major biodiversity hotspots, and much work has gone into identifying the drivers of this diversity. Considered regionally in the context of Quaternary climate change, climate stability is generally accepted as being one of the major factors promo…

Garrity, F. D. A., & Lusk, C. H. (2017). Independent contrasts reveal climatic relationships of divaricate plants in New Zealand. New Zealand Journal of Botany, 55(3), 225–240. doi:10.1080/0028825x.2017.1293695 https://doi.org/10.1080/0028825X.2017.1293695

Plant species with divaricate forms are particularly common in New Zealand, where approximately 10% of all endemic woody species can be categorised as divaricate. A number of potential selective pressures have been proposed in order to explain this unusual feature of New Zealand flora. It has been s…

Brightly, W. H., Hartley, S. E., Osborne, C. P., Simpson, K. J., & Strömberg, C. A. E. (2020). High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology. doi:10.1111/gcb.15343 https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…