Science Enabled by Specimen Data

Richard-Bollans, A., C. Aitken, A. Antonelli, C. Bitencourt, D. Goyder, E. Lucas, I. Ondo, et al. 2023. Machine learning enhances prediction of plants as potential sources of antimalarials. Frontiers in Plant Science 14.

Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families – Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) – and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms – Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks – and compare these to two ethnobotanical selection approaches – based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best – attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.

Robin-Champigneul, F., J. Gravendyck, H. Huang, A. Woutersen, D. Pocknall, N. Meijer, G. Dupont-Nivet, et al. 2023. Northward expansion of the southern-temperate podocarp forest during the Early Eocene Climatic Optimum: Palynological evidence from the NE Tibetan Plateau (China). Review of Palaeobotany and Palynology: 104914.

The debated vegetation response to climate change can be investigated through palynological fossil records from past extreme climate conditions. In this context, the early Eocene (53.3 to 41.2 million years ago (Ma)) is often referred to as a model for a greenhouse Earth. In the Xining Basin, situated on the North-eastern Tibetan Plateau (NETP), this time interval is represented by an extensive and well-dated sedimentary sequence of evaporites and red mudstones. Here we focus on the palynological record of the Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma) and study the fossil gymnosperm pollen composition in these sediments. In addition, we also investigate the nearest living relatives (NLR) or botanical affinity of these genera and the paleobiogeographic implications of their occurrence in the Eocene of the NETP. To reach our objective, we complemented transmitted light microscopy with laser scanning- and electron microscopy techniques, to produce high-resolution images, and illustrate the morphological variation within fossil and extant gymnosperm pollen. Furthermore, a morphometric analysis was carried out to investigate the infra- and intrageneric variation of these and related taxa. To place the data in context we produced paleobiogeographic maps for Phyllocladidites and for other Podocarpaceae, based on data from a global fossil pollen data base, and compare these with modern records from GBIF. We also assessed the climatic envelope of the NLR. Our analyses confirm the presence of Phyllocladidites (NLR Phyllocladus, Podocarpaceae) and Podocarpidites (NLR Podocarpus, Podocarpaceae) in the EECO deposits in the Xining Basin. In addition, a comparative study based on literature suggests that Parcisporites is likely a younger synonym of Phyllocladidites. Our findings further suggest that the Phyllocladidites specimens are derived from a lineage that was much more diverse than previously thought, and which had a much larger biogeographical distribution during the EECO than at present. Based on the climatic envelope of the NLR, we suggest that the paleoclimatic conditions in the Xining Basin were warmer and more humid during the EECO. We conclude that phylloclade-type conifers typical of the southern-temperate podocarp forests, had a northward geographical expansion during the EECO, followed by extirpation.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Watts, J. L., and J. E. Watkins. 2022. New Zealand Fern Distributions from the Last Glacial Maximum to 2070: A Dynamic Tale of Migration and Community Turnover. American Fern Journal 112.

The coming decades are predicated to bring widespread shifts in local, regional, and global climatic patterns. Currently there is limited understanding of how ferns will respond to these changes and few studies have attempted to model shifts in fern distribution in response to climate change. In this paper, we present a series of these models using the country of New Zealand as our study system. Ferns are notably abundant in New Zealand and play important ecological roles in early succession, canopy biology, and understory dynamics. Here we describe how fern distributions have changed since the Last Glacial Maximum to the present and predict how they will change with anthropogenic climate change – assuming no measures are taken to reduce carbon emissions. To do this, we used MaxEnt species distribution modelling with publicly available data from and to predict the past, present, and future distributions of 107 New Zealand fern species. The present study demonstrates that ferns in New Zealand have and will continue to expand their ranges and migrate southward and upslope. Despite the predicted general increased range size as a result of climate change, our models predict that the majority (52%) of many species' current suitable habitats may be climatically unsuitable in 50 years, including the ecologically important group: tree ferns. Additionally, fern communities are predicted to undergo drastic shifts in composition, which may be detrimental to overall ecosystem functioning in New Zealand.

Reichgelt, T., W. G. Lee, and D. E. Lee. 2022. The extinction of Miocene broad-leaved deciduous Nothofagaceae and loss of seasonal forest biomes in New Zealand. Review of Palaeobotany and Palynology: 104779.

Quantitative leaf mass per area reconstructions and prevalence of plicate vernation in broad-leaved Nothofagaceae fossils reveal that deciduousness was common in the middle to late Miocene of New Zealand. This functional type was subsequently lost, as modern-day New Zealand Nothofagaceae have small leaves that live for at least a year. Moreover, fully deciduous trees across all plant families are rare in the current New Zealand flora. Based on modern-day distribution in the Southern Hemisphere, broad-leaved deciduous Nothofagaceae occupy regions with consistently large seasonal differences in precipitation and cloud cover, relative to other functional types in the family (evergreen, small-leaved). Specifically, broad-leaved deciduous Nothofagaceae are in leaf in summer when cloud cover and precipitation are low, but are leafless in winter when cloud cover and precipitation is high. Notably, the seasonal difference in precipitation and cloud cover are more important in explaining deciduousness in Nothofagaceae than winter temperatures. Therefore, potential summer photosynthetic gains likely determine deciduousness in Nothofagaceae. Miocene palaeoclimate reconstructions reveal that New Zealand broad-leaved deciduous Nothofagaceae also thrived in a climate with larger seasonal precipitation differences than today, in an overall warmer climate. We suggest that deciduous Nothofagaceae in the New Zealand flora went extinct as the global climate cooled and summer photosynthetic gains diminished, as summers became progressively rainier and cloudier, favoring an evergreen habit.

Testo, W. L., A. L. de Gasper, S. Molino, J. M. G. y Galán, A. Salino, V. A. de O. Dittrich, and E. B. Sessa. 2022. Deep vicariance and frequent transoceanic dispersal shape the evolutionary history of a globally distributed fern family. American Journal of Botany.

Premise Historical biogeography of ferns is typically expected to be dominated by long-distance dispersal, due to their minuscule spores. However, few studies have inferred the historical biogeography of a large and widely distributed group of ferns to test this hypothesis. Our aims are to determine the extent to which long-distance dispersal vs. vicariance have shaped the history of the fern family Blechnaceae, to explore ecological correlates of dispersal and diversification, and to determine whether these patterns differ between the northern and southern hemispheres. Methods We used sequence data for three chloroplast loci to infer a time-calibrated phylogeny for 154 out of 265 species of Blechnaceae, including representatives of all genera in the family. This tree was used to conduct ancestral range reconstruction and stochastic character mapping, estimate diversification rates, and identify ecological correlates of diversification. Key results Blechnaceae originated in Eurasia and began diversifying in the late Cretaceous. A lineage comprising most extant diversity diversified principally in the austral Pacific region around the Paleocene-Eocene Thermal Maximum. Land connections that existed near the poles during periods of warm climates likely facilitated migration of several lineages, with subsequent climate-mediated vicariance shaping current distributions. Long-distance dispersal is frequent and asymmetrical, with New Zealand/Pacific Islands, Australia, and tropical America being major source areas. Conclusions Ancient vicariance and extensive long-distance dispersal have shaped the history of Blechnaceae in both the northern and southern hemispheres. The exceptional diversity in austral regions appears to reflect rapid speciation in these areas; mechanisms underlying this evolutionary success remain uncertain.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37.

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Camacho, F., and G. Peyre. 2022. Red List and Vulnerability Assessment of the Páramo Vascular Flora in the Nevados Natural National Park (Colombia). Tropical Conservation Science 15: 194008292210869.

Background and research aims. The Andean páramo is renowned for its unique biodiversity and sensitivity to environmental threats. However, vulnerability assessments remain scarce, which hinders our capacity to prioritize and apply efficient conservation measures. To this end, we established the Red List of the páramo vascular flora from the Nevados National Natural Park and proposed conservation strategies for its threatened species. Methods. We performed International Union for Conservation of Nature (IUCN) Red List assessments by evaluating Criterion B, including sub-criteria B1–Extent of Occurrence and B2–Area of Occupancy, and using a systematic geographic-ecological approach for conditions a (Location analysis) and b (Continuing decline). We then executed a Conservation Gap Analysis to prioritize species for in- situ and/or ex-situ conservation. Results. Summing our 233 evaluated species with previous assessments, we completed the Red List of 262 páramo species and encountered 3% Threatened (7 VU, one EN), 44% Not Threatened (65 LC, 50 NT), and 53% Data Deficient. We acknowledged Lupinus ruizensis as Endangered and Aequatorium jamesonii, Carex jamesonii, Elaphoglossum cuspidatum, Miconia latifolia, Miconia alborosea, Pentacalia gelida, and Themistoclesia mucronata as Vulnerable. Conclusion. The eight threatened species should be included as target species in the PNN Nevados management plan 2023–2028 and regarded as national conservation priorities. Implications for Conservation. We recommend in-situ conservation for Medium-Priority species A. jamesonii, E. cuspidatum, and T. mucronata with thorough monitoring, paired with sub-population transfers for High-Priority species C. jamesonii. For the endemic L. ruizensis and P. gelida, we suggest combined in-situ/ex-situ strategies taking advantage of national germoplasm collections, like the seed bank of the Bogotá Botanical Garden José Celestino Mutis.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844.

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.